Suppr超能文献

海泥中电缆细菌和电流的连续体

Succession of cable bacteria and electric currents in marine sediment.

机构信息

1] Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark [2] Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark.

Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark.

出版信息

ISME J. 2014 Jun;8(6):1314-22. doi: 10.1038/ismej.2013.239. Epub 2014 Jan 23.

Abstract

Filamentous Desulfobulbaceae have been reported to conduct electrons over centimetre-long distances, thereby coupling oxygen reduction at the surface of marine sediment to sulphide oxidation in sub-surface layers. To understand how these 'cable bacteria' establish and sustain electric conductivity, we followed a population for 53 days after exposing sulphidic sediment with initially no detectable filaments to oxygen. After 10 days, cable bacteria and electric currents were established throughout the top 15 mm of the sediment, and after 21 days the filament density peaked with a total length of 2 km cm(-2). Cells elongated and divided at all depths with doubling times over the first 10 days of <20 h. Active, oriented movement must have occurred to explain the separation of O2 and H2S by 15 mm. Filament diameters varied from 0.4-1.7 μm, with a general increase over time and depth, and yet they shared 16S rRNA sequence identity of >98%. Comparison of the increase in biovolume and electric current density suggested high cellular growth efficiency. While the vertical expansion of filaments continued over time and reached 30 mm, the electric current density and biomass declined after 13 and 21 days, respectively. This might reflect a breakdown of short filaments as their solid sulphide sources became depleted in the top layers of the anoxic zone. In conclusion, cable bacteria combine rapid and efficient growth with oriented movement to establish and exploit the spatially separated half-reactions of sulphide oxidation and oxygen consumption.

摘要

丝状脱硫杆菌科已被报道能够在数厘米长的距离上传导电子,从而将海洋沉积物表面的氧气还原与亚表层的硫化物氧化耦合起来。为了了解这些“电缆细菌”是如何建立和维持电导率的,我们在将原本没有可检测丝状菌的硫化沉积物暴露于氧气中 53 天后,对一个种群进行了跟踪。10 天后,整个沉积物的前 15 毫米都建立了电缆细菌和电流,21 天后,丝状菌密度达到峰值,总长度为 2 公里厘米(-2)。在最初的 10 天内,细胞在所有深度上伸长和分裂,倍增时间小于 20 小时。为了解释 O2 和 H2S 之间的分离,必须发生活性、定向运动。丝状体直径从 0.4-1.7 μm 不等,随着时间和深度的增加而普遍增加,但它们的 16S rRNA 序列同一性大于 98%。生物量和电流密度的增加比较表明细胞生长效率很高。虽然丝状体的垂直扩展随着时间的推移持续进行,并达到 30 毫米,但电流密度和生物量分别在 13 天和 21 天后下降。这可能反映了由于缺氧区顶层中固体硫化物源的枯竭,短丝状体的破裂。总之,电缆细菌将快速有效的生长与定向运动结合起来,建立并利用硫化物氧化和氧气消耗的空间分离的半反应。

相似文献

1
Succession of cable bacteria and electric currents in marine sediment.海泥中电缆细菌和电流的连续体
ISME J. 2014 Jun;8(6):1314-22. doi: 10.1038/ismej.2013.239. Epub 2014 Jan 23.
3
Cable Bacteria in Freshwater Sediments.淡水沉积物中的电缆细菌。
Appl Environ Microbiol. 2015 Sep 1;81(17):6003-11. doi: 10.1128/AEM.01064-15. Epub 2015 Jun 26.
5
Filamentous bacteria transport electrons over centimetre distances.丝状菌在厘米距离内传递电子。
Nature. 2012 Nov 8;491(7423):218-21. doi: 10.1038/nature11586. Epub 2012 Oct 24.
10
Motility of Electric Cable Bacteria.电缆细菌的运动性
Appl Environ Microbiol. 2016 Jun 13;82(13):3816-21. doi: 10.1128/AEM.01038-16. Print 2016 Jul 1.

引用本文的文献

4
On the diversity, phylogeny and biogeography of cable bacteria.论丝状菌的多样性、系统发育和生物地理学。
Front Microbiol. 2024 Nov 19;15:1485281. doi: 10.3389/fmicb.2024.1485281. eCollection 2024.
8
Electrogenic sulfur oxidation mediated by cable bacteria and its ecological effects.由电缆细菌介导的产电硫氧化及其生态效应。
Environ Sci Ecotechnol. 2023 Dec 19;20:100371. doi: 10.1016/j.ese.2023.100371. eCollection 2024 Jul.

本文引用的文献

1
Filamentous bacteria transport electrons over centimetre distances.丝状菌在厘米距离内传递电子。
Nature. 2012 Nov 8;491(7423):218-21. doi: 10.1038/nature11586. Epub 2012 Oct 24.
7
PHYSIOLOGY OF STOMATA OF RUMEX PATIENTIA.巴天酸模气孔的生理学
Science. 1923 Feb 16;57(1468):205-6. doi: 10.1126/science.57.1468.205.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验