Suppr超能文献

影像组学表型特征可预测非小细胞肺癌的病理反应。

Radiomic phenotype features predict pathological response in non-small cell lung cancer.

作者信息

Coroller Thibaud P, Agrawal Vishesh, Narayan Vivek, Hou Ying, Grossmann Patrick, Lee Stephanie W, Mak Raymond H, Aerts Hugo J W L

机构信息

Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, USA.

Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, USA.

出版信息

Radiother Oncol. 2016 Jun;119(3):480-6. doi: 10.1016/j.radonc.2016.04.004. Epub 2016 Apr 13.

Abstract

BACKGROUND AND PURPOSE

Radiomics can quantify tumor phenotype characteristics non-invasively by applying advanced imaging feature algorithms. In this study we assessed if pre-treatment radiomics data are able to predict pathological response after neoadjuvant chemoradiation in patients with locally advanced non-small cell lung cancer (NSCLC).

MATERIALS AND METHODS

127 NSCLC patients were included in this study. Fifteen radiomic features selected based on stability and variance were evaluated for its power to predict pathological response. Predictive power was evaluated using area under the curve (AUC). Conventional imaging features (tumor volume and diameter) were used for comparison.

RESULTS

Seven features were predictive for pathologic gross residual disease (AUC>0.6, p-value<0.05), and one for pathologic complete response (AUC=0.63, p-value=0.01). No conventional imaging features were predictive (range AUC=0.51-0.59, p-value>0.05). Tumors that did not respond well to neoadjuvant chemoradiation were more likely to present a rounder shape (spherical disproportionality, AUC=0.63, p-value=0.009) and heterogeneous texture (LoG 5mm 3D - GLCM entropy, AUC=0.61, p-value=0.03).

CONCLUSION

We identified predictive radiomic features for pathological response, although no conventional features were significantly predictive. This study demonstrates that radiomics can provide valuable clinical information, and performed better than conventional imaging features.

摘要

背景与目的

放射组学可通过应用先进的影像特征算法对肿瘤表型特征进行无创定量分析。在本研究中,我们评估了局部晚期非小细胞肺癌(NSCLC)患者新辅助放化疗前的放射组学数据是否能够预测病理反应。

材料与方法

本研究纳入了127例NSCLC患者。基于稳定性和方差选择的15个放射组学特征被评估其预测病理反应的能力。使用曲线下面积(AUC)评估预测能力。使用传统影像特征(肿瘤体积和直径)进行比较。

结果

7个特征可预测病理大体残留疾病(AUC>0.6,p值<0.05),1个特征可预测病理完全缓解(AUC=0.63,p值=0.01)。没有传统影像特征具有预测性(AUC范围为0.51 - 0.59,p值>0.05)。对新辅助放化疗反应不佳的肿瘤更可能呈现更圆的形状(球形不对称性,AUC=0.63,p值=0.009)和不均匀纹理(LoG 5mm 3D - GLCM熵,AUC=0.61,p值=0.03)。

结论

我们确定了预测病理反应的放射组学特征,尽管没有传统特征具有显著预测性。本研究表明放射组学可提供有价值的临床信息,且比传统影像特征表现更好。

相似文献

引用本文的文献

本文引用的文献

1
Radiomics: Images Are More than Pictures, They Are Data.放射组学:图像不止是图片,它们是数据。
Radiology. 2016 Feb;278(2):563-77. doi: 10.1148/radiol.2015151169. Epub 2015 Nov 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验