Suppr超能文献

基于CT的立体定向体部放射治疗肺癌患者的放射组学分析。

CT-based radiomic analysis of stereotactic body radiation therapy patients with lung cancer.

作者信息

Huynh Elizabeth, Coroller Thibaud P, Narayan Vivek, Agrawal Vishesh, Hou Ying, Romano John, Franco Idalid, Mak Raymond H, Aerts Hugo J W L

机构信息

Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, USA.

Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, USA.

出版信息

Radiother Oncol. 2016 Aug;120(2):258-66. doi: 10.1016/j.radonc.2016.05.024. Epub 2016 Jun 10.

Abstract

BACKGROUND

Radiomics uses a large number of quantitative imaging features that describe the tumor phenotype to develop imaging biomarkers for clinical outcomes. Radiomic analysis of pre-treatment computed-tomography (CT) scans was investigated to identify imaging predictors of clinical outcomes in early stage non-small cell lung cancer (NSCLC) patients treated with stereotactic body radiation therapy (SBRT).

MATERIALS AND METHODS

CT images of 113 stage I-II NSCLC patients treated with SBRT were analyzed. Twelve radiomic features were selected based on stability and variance. The association of features with clinical outcomes and their prognostic value (using the concordance index (CI)) was evaluated. Radiomic features were compared with conventional imaging metrics (tumor volume and diameter) and clinical parameters.

RESULTS

Overall survival was associated with two conventional features (volume and diameter) and two radiomic features (LoG 3D run low gray level short run emphasis and stats median). One radiomic feature (Wavelet LLH stats range) was significantly prognostic for distant metastasis (CI=0.67, q-value<0.1), while none of the conventional and clinical parameters were. Three conventional and four radiomic features were prognostic for overall survival.

CONCLUSION

This exploratory analysis demonstrates that radiomic features have potential to be prognostic for some outcomes that conventional imaging metrics cannot predict in SBRT patients.

摘要

背景

放射组学利用大量描述肿瘤表型的定量成像特征来开发用于临床结局的成像生物标志物。对治疗前计算机断层扫描(CT)图像进行放射组学分析,以确定接受立体定向体部放射治疗(SBRT)的早期非小细胞肺癌(NSCLC)患者临床结局的成像预测指标。

材料与方法

分析了113例接受SBRT治疗的I-II期NSCLC患者的CT图像。基于稳定性和方差选择了12个放射组学特征。评估了这些特征与临床结局的相关性及其预后价值(使用一致性指数(CI))。将放射组学特征与传统成像指标(肿瘤体积和直径)及临床参数进行比较。

结果

总生存期与两个传统特征(体积和直径)以及两个放射组学特征(高斯低通滤波3D行程低灰度级短行程强调和统计中位数)相关。一个放射组学特征(小波LLH统计范围)对远处转移具有显著预后价值(CI = 0.67,q值<0.1),而传统和临床参数均无此作用。三个传统特征和四个放射组学特征对总生存期具有预后价值。

结论

这项探索性分析表明,放射组学特征有可能对SBRT患者的某些传统成像指标无法预测的结局具有预后价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验