Suppr超能文献

将时空模型应用于纵向心脏成像数据

APPLYING A SPATIOTEMPORAL MODEL FOR LONGITUDINAL CARDIAC IMAGING DATA.

作者信息

George Brandon, Denney Thomas, Gupta Himanshu, Dell'Italia Louis, Aban Inmaculada

机构信息

University of Alabama at Birmingham.

Auburn University.

出版信息

Ann Appl Stat. 2016 Mar;10(1):527-548. doi: 10.1214/16-AOAS911. Epub 2016 Mar 25.

Abstract

Longitudinal imaging studies have both spatial and temporal correlation among the multiple outcome measurements from a subject. Statistical methods of analysis must properly account for this autocorrelation. In this work we discuss how a linear model with a separable parametric correlation structure could be used to analyze data from such a study. The goal of this paper is to provide an easily understood description of how such a model works and discuss how it can be applied to real data. Model assumptions are discussed and the process of selecting a working correlation structure is thoroughly discussed. The steps necessitating collaboration between statistical and scientific investigators have been highlighted, as have considerations for missing data or uneven follow-up. The results from a completed longitudinal cardiac imaging study were considered for illustration purposes. The data comes from a clinical trial for medical therapy for patients with mitral regurgitation, with repeated measurements taken at sixteen locations from the left ventricle to measure disease progression. The spatiotemporal correlation model was compared to previously used summary measures to demonstrate improved power as well as increased flexibility in the use of time- and space-varying predictors.

摘要

纵向成像研究在来自同一受试者的多个结果测量值之间具有空间和时间相关性。统计分析方法必须恰当地考虑这种自相关性。在这项工作中,我们讨论了如何使用具有可分离参数相关结构的线性模型来分析此类研究的数据。本文的目的是提供对这种模型如何工作的易于理解的描述,并讨论它如何应用于实际数据。讨论了模型假设,并详细讨论了选择工作相关结构的过程。强调了统计人员与科研人员之间进行协作的必要步骤,以及对缺失数据或随访不均衡的考虑。为了说明目的,考虑了一项已完成的纵向心脏成像研究的结果。数据来自一项针对二尖瓣反流患者的药物治疗临床试验,在左心室的16个位置进行重复测量以评估疾病进展。将时空相关模型与先前使用的汇总测量方法进行比较,以证明其在使用随时间和空间变化的预测因子时具有更高的功效和更大的灵活性。

相似文献

1
APPLYING A SPATIOTEMPORAL MODEL FOR LONGITUDINAL CARDIAC IMAGING DATA.
Ann Appl Stat. 2016 Mar;10(1):527-548. doi: 10.1214/16-AOAS911. Epub 2016 Mar 25.
2
Selecting a separable parametric spatiotemporal covariance structure for longitudinal imaging data.
Stat Med. 2015 Jan 15;34(1):145-61. doi: 10.1002/sim.6324. Epub 2014 Oct 8.
5
Longitudinal modeling of appearance and shape and its potential for clinical use.
Med Image Anal. 2016 Oct;33:114-121. doi: 10.1016/j.media.2016.06.014. Epub 2016 Jun 15.
6
Separability tests for high-dimensional, low sample size multivariate repeated measures data.
J Appl Stat. 2014;41(11):2450-2461. doi: 10.1080/02664763.2014.919251.
7
A geostatistical state-space model of animal densities for stream networks.
Ecol Appl. 2018 Oct;28(7):1782-1796. doi: 10.1002/eap.1767. Epub 2018 Jul 23.
10
Bayesian spatiotemporal crash frequency models with mixture components for space-time interactions.
Accid Anal Prev. 2018 Mar;112:84-93. doi: 10.1016/j.aap.2017.12.020. Epub 2018 Jan 8.

引用本文的文献

1
Spatial and spatio-temporal statistical analyses of retinal images: a review of methods and applications.
BMJ Open Ophthalmol. 2020 May 28;5(1):e000479. doi: 10.1136/bmjophth-2020-000479. eCollection 2020.
2
Spatial statistical modelling of capillary non-perfusion in the retina.
Sci Rep. 2017 Dec 1;7(1):16792. doi: 10.1038/s41598-017-16620-x.
3
Does Testing More Frequently Shorten the Time to Detect Disease Progression?
Transl Vis Sci Technol. 2017 May 1;6(3):1. doi: 10.1167/tvst.6.3.1. eCollection 2017 May.

本文引用的文献

1
Separability tests for high-dimensional, low sample size multivariate repeated measures data.
J Appl Stat. 2014;41(11):2450-2461. doi: 10.1080/02664763.2014.919251.
2
Selecting a separable parametric spatiotemporal covariance structure for longitudinal imaging data.
Stat Med. 2015 Jan 15;34(1):145-61. doi: 10.1002/sim.6324. Epub 2014 Oct 8.
3
Kronecker product linear exponent AR(1) correlation structures for multivariate repeated measures.
PLoS One. 2014 Feb 21;9(2):e88864. doi: 10.1371/journal.pone.0088864. eCollection 2014.
4
A randomized controlled phase IIb trial of beta(1)-receptor blockade for chronic degenerative mitral regurgitation.
J Am Coll Cardiol. 2012 Aug 28;60(9):833-8. doi: 10.1016/j.jacc.2012.04.029. Epub 2012 Jul 18.
6
Selecting the best unbalanced repeated measures model.
Behav Res Methods. 2011 Mar;43(1):18-36. doi: 10.3758/s13428-010-0040-1.
8
Modelling of cardiac imaging data with spatial correlation.
Stat Med. 2004 Mar 30;23(6):965-85. doi: 10.1002/sim.1741.
10
Modelling covariance structure in the analysis of repeated measures data.
Stat Med. 2000 Jul 15;19(13):1793-819. doi: 10.1002/1097-0258(20000715)19:13<1793::aid-sim482>3.0.co;2-q.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验