Suppr超能文献

用于高效体内递送的 lPEI/DNA 纳米颗粒上 PEG 接枝的临界长度

Critical Length of PEG Grafts on lPEI/DNA Nanoparticles for Efficient in Vivo Delivery.

作者信息

Williford John-Michael, Archang Maani M, Minn Il, Ren Yong, Wo Mark, Vandermark John, Fisher Paul B, Pomper Martin G, Mao Hai-Quan

机构信息

Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, United States; Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States.

Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States; Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States.

出版信息

ACS Biomater Sci Eng. 2016 Apr 11;2(4):567-578. doi: 10.1021/acsbiomaterials.5b00551. Epub 2016 Mar 3.

Abstract

Nanoparticle-mediated gene delivery is a promising alternative to viral methods; however, its use in vivo, particularly following systemic injection, has suffered from poor delivery efficiency. Although PEGylation of nanoparticles has been successfully demonstrated as a strategy to enhance colloidal stability, its success in improving delivery efficiency has been limited, largely due to reduced cell binding and uptake, leading to poor transfection efficiency. Here we identified an optimized PEGylation scheme for DNA micellar nanoparticles that delivers balanced colloidal stability and transfection activity. Using linear polyethylenimine (lPEI)--PEG as a carrier, we characterized the effect of graft length and density of polyethylene glycol (PEG) on nanoparticle assembly, micelle stability, and gene delivery efficiency. Through variation of PEG grafting degree, lPEI with short PEG grafts (molecular weight, MW 500-700 Da) generated micellar nanoparticles with various shapes including spherical, rodlike, and wormlike nanoparticles. DNA micellar nanoparticles prepared with short PEG grafts showed comparable colloidal stability in salt and serum-containing media to those prepared with longer PEG grafts (MW 2 kDa). Corresponding to this trend, nanoparticles prepared with short PEG grafts displayed significantly higher in vitro transfection efficiency compared to those with longer PEG grafts. More importantly, short PEG grafts permitted marked increase in transfection efficiency following ligand conjugation to the PEG terminal in metastatic prostate cancer-bearing mice. This study identifies that lPEI--PEG with short PEG grafts (MW 500-700 Da) is the most effective to ensure shape control and deliver high colloidal stability, transfection activity, and ligand effect for DNA nanoparticles in vitro and in vivo following intravenous administration.

摘要

纳米颗粒介导的基因递送是一种有前景的替代病毒方法;然而,其在体内的应用,尤其是全身注射后,递送效率较低。尽管纳米颗粒的聚乙二醇化已成功证明是提高胶体稳定性的策略,但其在提高递送效率方面的成功有限,主要是由于细胞结合和摄取减少,导致转染效率低下。在此,我们确定了一种优化的聚乙二醇化方案,用于DNA胶束纳米颗粒,该方案可提供平衡的胶体稳定性和转染活性。使用线性聚乙烯亚胺(lPEI)-聚乙二醇(PEG)作为载体,我们表征了聚乙二醇(PEG)的接枝长度和密度对纳米颗粒组装、胶束稳定性和基因递送效率的影响。通过改变PEG接枝度,具有短PEG接枝(分子量,MW 500-700 Da)的lPEI产生了各种形状的胶束纳米颗粒,包括球形、棒状和蠕虫状纳米颗粒。用短PEG接枝制备的DNA胶束纳米颗粒在含盐和血清的培养基中显示出与用长PEG接枝(MW 2 kDa)制备的纳米颗粒相当的胶体稳定性。与此趋势一致,与长PEG接枝的纳米颗粒相比,用短PEG接枝制备的纳米颗粒在体外显示出显著更高的转染效率。更重要的是,短PEG接枝在与转移性前列腺癌荷瘤小鼠的PEG末端进行配体偶联后,允许转染效率显著提高。本研究表明,具有短PEG接枝(MW 500-700 Da)的lPEI-PEG在静脉给药后对DNA纳米颗粒在体外和体内确保形状控制、提供高胶体稳定性、转染活性和配体效应最为有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da91/4829937/c49ab534d182/ab-2015-005519_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验