Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147; email:
Annu Rev Neurosci. 2016 Jul 8;39:217-36. doi: 10.1146/annurev-neuro-070815-013845. Epub 2016 Apr 18.
In this review, we discuss the emerging field of computational behavioral analysis-the use of modern methods from computer science and engineering to quantitatively measure animal behavior. We discuss aspects of experiment design important to both obtaining biologically relevant behavioral data and enabling the use of machine vision and learning techniques for automation. These two goals are often in conflict. Restraining or restricting the environment of the animal can simplify automatic behavior quantification, but it can also degrade the quality or alter important aspects of behavior. To enable biologists to design experiments to obtain better behavioral measurements, and computer scientists to pinpoint fruitful directions for algorithm improvement, we review known effects of artificial manipulation of the animal on behavior. We also review machine vision and learning techniques for tracking, feature extraction, automated behavior classification, and automated behavior discovery, the assumptions they make, and the types of data they work best with.
在这篇综述中,我们讨论了计算行为分析这一新兴领域——利用计算机科学和工程领域的现代方法来定量测量动物行为。我们讨论了实验设计的各个方面,这些方面对于获得具有生物学相关性的行为数据以及能够使用机器视觉和学习技术实现自动化都很重要。这两个目标往往相互冲突。限制动物的环境可以简化自动行为量化,但也会降低行为的质量或改变行为的重要方面。为了使生物学家能够设计实验以获得更好的行为测量结果,使计算机科学家能够确定算法改进的有成效的方向,我们回顾了人为干预动物对行为的已知影响。我们还回顾了用于跟踪、特征提取、自动行为分类和自动行为发现的机器视觉和学习技术,以及它们的假设和最适合的数据集类型。