Blanc Alexandre, Laurent François, Barbier-Chebbah Alex, Van Assel Hugues, Cocanougher Benjamin T, Jones Benjamin M W, Hague Peter, Zlatic Marta, Chikhi Rayan, Vestergaard Christian L, Jovanic Tihana, Masson Jean-Baptiste, Barré Chloé
Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Decision and Bayesian Computation, Paris, France.
Epiméthée, INRIA, Paris, France.
PLoS Comput Biol. 2025 Apr 21;21(4):e1012990. doi: 10.1371/journal.pcbi.1012990. eCollection 2025 Apr.
The central nervous system can generate various behaviors, including motor responses, which we can observe through video recordings. Recent advances in gene manipulation, automated behavioral acquisition at scale, and machine learning enable us to causally link behaviors to their underlying neural mechanisms. Moreover, in some animals, such as the Drosophila melanogaster larva, this mapping is possible at the unprecedented scale of single neurons, allowing us to identify the neural microcircuits generating particular behaviors. These high-throughput screening efforts, linking the activation or suppression of specific neurons to behavioral patterns in millions of animals, provide a rich dataset to explore the diversity of nervous system responses to the same stimuli. However, important challenges remain in identifying subtle behaviors, including immediate and delayed responses to neural activation or suppression, and understanding these behaviors on a large scale. We here introduce several statistically robust methods for analyzing behavioral data in response to these challenges: 1) A generative physical model that regularizes the inference of larval shapes across the entire dataset. 2) An unsupervised kernel-based method for statistical testing in learned behavioral spaces aimed at detecting subtle deviations in behavior. 3) A generative model for larval behavioral sequences, providing a benchmark for identifying higher-order behavioral changes. 4) A comprehensive analysis technique using suffix trees to categorize genetic lines into clusters based on common action sequences. We showcase these methodologies through a behavioral screen focused on responses to an air puff, analyzing data from 280 716 larvae across 569 genetic lines.
中枢神经系统能够产生各种行为,包括运动反应,我们可以通过视频记录来观察这些反应。基因操纵、大规模自动化行为采集以及机器学习方面的最新进展,使我们能够将行为与其潜在的神经机制建立因果联系。此外,在一些动物中,如有黑腹果蝇幼虫,这种映射可以在单个神经元的前所未有的规模上实现,从而使我们能够识别产生特定行为的神经微电路。这些高通量筛选工作,将特定神经元的激活或抑制与数百万动物的行为模式联系起来,提供了一个丰富的数据集,以探索神经系统对相同刺激反应的多样性。然而,在识别微妙行为方面,包括对神经激活或抑制的即时和延迟反应,以及大规模理解这些行为方面,仍然存在重要挑战。我们在此介绍几种统计上稳健的方法,以应对这些挑战来分析行为数据:1)一种生成物理模型,用于规范整个数据集中幼虫形状的推断。2)一种基于无监督核的方法,用于在学习到的行为空间中进行统计测试,旨在检测行为中的微妙偏差。3)一种用于幼虫行为序列的生成模型,为识别高阶行为变化提供基准。4)一种使用后缀树的综合分析技术,根据共同的动作序列将遗传系分类为簇。我们通过一个专注于对吹气反应的行为筛选展示了这些方法,分析了来自569个遗传系的280716只幼虫的数据。