MacNab Ying C
Division of Epidemiology and Biostatistics, School of Population and Public Health, University of British Columbia, Vancouver, Canada.
Stat Med. 2016 Sep 20;35(21):3827-50. doi: 10.1002/sim.6955. Epub 2016 Apr 18.
We present a general coregionalization framework for developing coregionalized multivariate Gaussian conditional autoregressive (cMCAR) models for Bayesian analysis of multivariate lattice data in general and multivariate disease mapping data in particular. This framework is inclusive of cMCARs that facilitate flexible modelling of spatially structured symmetric or asymmetric cross-variable local interactions, allowing a wide range of separable or non-separable covariance structures, and symmetric or asymmetric cross-covariances, to be modelled. We present a brief overview of established univariate Gaussian conditional autoregressive (CAR) models for univariate lattice data and develop coregionalized multivariate extensions. Classes of cMCARs are presented by formulating precision structures. The resulting conditional properties of the multivariate spatial models are established, which cast new light on cMCARs with richly structured covariances and cross-covariances of different spatial ranges. The related methods are illustrated via an in-depth Bayesian analysis of a Minnesota county-level cancer data set. We also bring a new dimension to the traditional enterprize of Bayesian disease mapping: estimating and mapping covariances and cross-covariances of the underlying disease risks. Maps of covariances and cross-covariances bring to light spatial characterizations of the cMCARs and inform on spatial risk associations between areas and diseases. Copyright © 2016 John Wiley & Sons, Ltd.
我们提出了一个通用的共同区域化框架,用于开发共同区域化多元高斯条件自回归(cMCAR)模型,以进行一般多元格点数据尤其是多元疾病映射数据的贝叶斯分析。该框架包含了cMCAR模型,这些模型有助于对空间结构的对称或不对称交叉变量局部相互作用进行灵活建模,允许对广泛的可分离或不可分离协方差结构以及对称或不对称交叉协方差进行建模。我们简要概述了用于单变量格点数据的已建立的单变量高斯条件自回归(CAR)模型,并开发了共同区域化多元扩展模型。通过制定精度结构来呈现cMCAR模型的类别。建立了多元空间模型的结果条件属性,这为具有丰富结构协方差和不同空间范围交叉协方差的cMCAR模型提供了新的视角。通过对明尼苏达州县级癌症数据集进行深入的贝叶斯分析来说明相关方法。我们还为贝叶斯疾病映射的传统工作带来了新的维度:估计和绘制潜在疾病风险的协方差和交叉协方差。协方差和交叉协方差图揭示了cMCAR模型的空间特征,并提供了区域与疾病之间空间风险关联的信息。版权所有© 2016约翰威立父子有限公司。