Suppr超能文献

寡肽结合蛋白A水合活性位点中相对结合自由能的计算

Calculation of Relative Binding Free Energy in the Water-Filled Active Site of Oligopeptide-Binding Protein A.

作者信息

Maurer Manuela, de Beer Stephanie B A, Oostenbrink Chris

机构信息

Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria.

出版信息

Molecules. 2016 Apr 15;21(4):499. doi: 10.3390/molecules21040499.

Abstract

The periplasmic oligopeptide binding protein A (OppA) represents a well-known example of water-mediated protein-ligand interactions. Here, we perform free-energy calculations for three different ligands binding to OppA, using a thermodynamic integration approach. The tripeptide ligands share a high structural similarity (all have the sequence KXK), but their experimentally-determined binding free energies differ remarkably. Thermodynamic cycles were constructed for the ligands, and simulations conducted in the bound and (freely solvated) unbound states. In the unbound state, it was observed that the difference in conformational freedom between alanine and glycine leads to a surprisingly slow convergence, despite their chemical similarity. This could be overcome by increasing the softness parameter during alchemical transformations. Discrepancies remained in the bound state however, when comparing independent simulations of the three ligands. These difficulties could be traced to a slow relaxation of the water network within the active site. Fluctuations in the number of water molecules residing in the binding cavity occur mostly on a timescale larger than the simulation time along the alchemical path. After extensive simulations, relative binding free energies that were converged to within thermal noise could be obtained, which agree well with available experimental data.

摘要

周质寡肽结合蛋白A(OppA)是水介导的蛋白质-配体相互作用的一个著名例子。在此,我们使用热力学积分方法对三种不同配体与OppA的结合进行了自由能计算。三肽配体具有高度的结构相似性(均具有序列KXK),但它们通过实验测定的结合自由能却有显著差异。为这些配体构建了热力学循环,并在结合态和(自由溶剂化的)未结合态进行了模拟。在未结合态中,观察到尽管丙氨酸和甘氨酸在化学上相似,但它们构象自由度的差异导致收敛速度惊人地慢。这可以通过在炼金术转换过程中增加软度参数来克服。然而,在比较三种配体的独立模拟时,结合态仍存在差异。这些困难可追溯到活性位点内水网络的缓慢弛豫。结合腔内水分子数量的波动大多发生在比沿炼金术路径的模拟时间更长的时间尺度上。经过广泛模拟后,可以获得收敛到热噪声范围内的相对结合自由能,这与现有的实验数据吻合良好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe59/6273013/6b2a817ccf7d/molecules-21-00499-g001.jpg

相似文献

3
The structural basis of sequence-independent peptide binding by OppA protein.
Science. 1994 Jun 10;264(5165):1578-81. doi: 10.1126/science.8202710.
7
Why OppA protein can bind sequence-independent peptides? A combination of QM/MM, PB/SA, and structure-based QSAR analyses.
Amino Acids. 2011 Feb;40(2):493-503. doi: 10.1007/s00726-010-0661-9. Epub 2010 Jun 27.
8
Backbone 1H, 13C and 15N assignments of a 59 kDa Salmonella typhimurium periplasmic oligopeptide binding protein, OppA.
Biomol NMR Assign. 2007 Jul;1(1):37-9. doi: 10.1007/s12104-007-9008-1. Epub 2007 May 30.
9
AcquaAlta: a directional approach to the solvation of ligand-protein complexes.
J Chem Inf Model. 2011 Aug 22;51(8):1867-81. doi: 10.1021/ci200150p. Epub 2011 Jul 18.
10
Importance of a hydrophobic pocket for peptide binding in lactococcal OppA.
J Bacteriol. 2011 Aug;193(16):4254-6. doi: 10.1128/JB.00447-11. Epub 2011 Jun 10.

引用本文的文献

1
Simulated pressure changes in LacI suggest a link between hydration and functional conformational changes.
Biophys Chem. 2024 Jan;304:107126. doi: 10.1016/j.bpc.2023.107126. Epub 2023 Oct 26.
2
Accelerated Enveloping Distribution Sampling to Probe the Presence of Water Molecules.
J Chem Theory Comput. 2023 Jun 13;19(11):3379-3390. doi: 10.1021/acs.jctc.3c00109. Epub 2023 May 11.
3
WaterKit: Thermodynamic Profiling of Protein Hydration Sites.
J Chem Theory Comput. 2023 May 9;19(9):2535-2556. doi: 10.1021/acs.jctc.2c01087. Epub 2023 Apr 24.
4
Enhancing sampling of water rehydration upon ligand binding using variants of grand canonical Monte Carlo.
J Comput Aided Mol Des. 2022 Oct;36(10):767-779. doi: 10.1007/s10822-022-00479-w. Epub 2022 Oct 6.
5
Enhancing Sampling of Water Rehydration on Ligand Binding: A Comparison of Techniques.
J Chem Theory Comput. 2022 Mar 8;18(3):1359-1381. doi: 10.1021/acs.jctc.1c00590. Epub 2022 Feb 11.
6
Efficient Saturation Mutagenesis of a Member of the Caspase Protease Family.
J Chem Inf Model. 2021 Mar 22;61(3):1193-1203. doi: 10.1021/acs.jcim.0c01216. Epub 2021 Feb 11.
7
Accounting for the Central Role of Interfacial Water in Protein-Ligand Binding Free Energy Calculations.
J Chem Theory Comput. 2020 Dec 8;16(12):7883-7894. doi: 10.1021/acs.jctc.0c00785. Epub 2020 Nov 18.
8
Enhancing water sampling of buried binding sites using nonequilibrium candidate Monte Carlo.
J Comput Aided Mol Des. 2021 Feb;35(2):167-177. doi: 10.1007/s10822-020-00344-8. Epub 2020 Sep 24.
9
Dissecting the Energetics of Intrinsically Disordered Proteins via a Hybrid Experimental and Computational Approach.
J Phys Chem B. 2019 Dec 12;123(49):10394-10402. doi: 10.1021/acs.jpcb.9b08323. Epub 2019 Dec 3.
10
Water in protein hydration and ligand recognition.
J Mol Recognit. 2019 Dec;32(12):e2810. doi: 10.1002/jmr.2810. Epub 2019 Aug 27.

本文引用的文献

5
Escherichia coli peptide binding protein OppA has a preference for positively charged peptides.
J Mol Biol. 2011 Nov 18;414(1):75-85. doi: 10.1016/j.jmb.2011.09.043. Epub 2011 Oct 1.
6
Why OppA protein can bind sequence-independent peptides? A combination of QM/MM, PB/SA, and structure-based QSAR analyses.
Amino Acids. 2011 Feb;40(2):493-503. doi: 10.1007/s00726-010-0661-9. Epub 2010 Jun 27.
7
The role of water molecules in computational drug design.
Curr Top Med Chem. 2010;10(1):55-66. doi: 10.2174/156802610790232288.
8
The structural basis for peptide selection by the transport receptor OppA.
EMBO J. 2009 May 6;28(9):1332-40. doi: 10.1038/emboj.2009.65. Epub 2009 Mar 19.
9
Water at biomolecular binding interfaces.
Phys Chem Chem Phys. 2007 Feb 7;9(5):573-81. doi: 10.1039/b612449f. Epub 2006 Nov 24.
10
The effect of water displacement on binding thermodynamics: concanavalin A.
J Phys Chem B. 2005 Jan 13;109(1):662-70. doi: 10.1021/jp0477912.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验