Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada.
Langmuir. 2016 May 10;32(18):4393-404. doi: 10.1021/acs.langmuir.6b00493. Epub 2016 Apr 27.
Zwitterionic phosphocholine (PC) lipids are the main constituent of the mammalian cell membrane. PC bilayers are known for their antifouling properties, yet they are adsorbed by all tested inorganic nanoparticles. This feature article is focused on the developments in my laboratory in the past few years on this topic. The main experimental techniques include fluorescence-based liposome leakage assays, adsorption and desorption, and cryo-TEM. Different materials interact with PC liposomes differently. PC liposomes adsorb on SiO2, followed by membrane fusion with the surface forming supported lipid bilayers. TiO2 and other metal oxides adsorb only intact PC liposomes via lipid phosphate bonding; the steric effect from the choline group hinders subsequent liposome fusion onto the particles. Citrate-capped AuNPs are adsorbed very strongly via van der Waals forces, inducing local gelation. The result is transient liposome leakage upon AuNP adsorption or desorption and AuNP aggregation on the liposome surface. All carbon-based nanomaterials (graphene oxides, carbon nanotubes, and nanodiamond) are adsorbed mainly via hydrogen bonding. The oxidation level of graphene oxide strongly influences the outcome of the final hybrid material. In the context of inorganic nanoparticle adsorption, insights are given regarding the lack of protein adsorption by PC bilayers. These inorganic/lipid hybrid materials can be used for controlled release, drug delivery, and fundamental studies. A few examples of application are covered toward the end, and future perspectives are given.
两性离子磷酸胆碱(PC)脂质是哺乳动物细胞膜的主要组成部分。PC 双层膜以其抗污特性而闻名,但它们会被所有测试过的无机纳米颗粒吸附。本文主要关注的是过去几年我实验室在这一课题上的研究进展。主要的实验技术包括基于荧光的脂质体渗漏测定、吸附和脱附以及冷冻透射电子显微镜。不同的材料与 PC 脂质体的相互作用方式不同。PC 脂质体吸附在 SiO2 上,随后与表面发生膜融合,形成支撑脂质双层。TiO2 和其他金属氧化物仅通过磷酸酯键吸附完整的 PC 脂质体;来自胆碱基团的空间位阻阻碍了随后的脂质体与颗粒的融合。柠檬酸封端的 AuNPs 通过范德华力强烈吸附,诱导局部凝胶化。结果是在 AuNP 吸附或脱附和 AuNP 在脂质体表面聚集时,脂质体发生短暂渗漏。所有基于碳的纳米材料(氧化石墨烯、碳纳米管和纳米金刚石)主要通过氢键吸附。氧化石墨烯的氧化水平强烈影响最终混合材料的结果。在无机纳米颗粒吸附的背景下,阐述了 PC 双层膜缺乏蛋白质吸附的原因。这些无机/脂质混合材料可用于控制释放、药物传递和基础研究。文末介绍了一些应用实例,并给出了未来展望。