Wan Fei, Mitra Nandita
1 Biostatistics Unit, Group Health Research Institute, Seattle, WA, USA.
2 Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, USA.
Stat Methods Med Res. 2018 Mar;27(3):846-862. doi: 10.1177/0962280216643739. Epub 2016 Apr 19.
Propensity score methods are commonly used to adjust for observed confounding when estimating the conditional treatment effect in observational studies. One popular method, covariate adjustment of the propensity score in a regression model, has been empirically shown to be biased in non-linear models. However, no compelling underlying theoretical reason has been presented. We propose a new framework to investigate bias and consistency of propensity score-adjusted treatment effects in non-linear models that uses a simple geometric approach to forge a link between the consistency of the propensity score estimator and the collapsibility of non-linear models. Under this framework, we demonstrate that adjustment of the propensity score in an outcome model results in the decomposition of observed covariates into the propensity score and a remainder term. Omission of this remainder term from a non-collapsible regression model leads to biased estimates of the conditional odds ratio and conditional hazard ratio, but not for the conditional rate ratio. We further show, via simulation studies, that the bias in these propensity score-adjusted estimators increases with larger treatment effect size, larger covariate effects, and increasing dissimilarity between the coefficients of the covariates in the treatment model versus the outcome model.
在观察性研究中估计条件治疗效果时,倾向得分方法通常用于对观察到的混杂因素进行调整。一种常用的方法是在回归模型中对倾向得分进行协变量调整,但经验表明,在非线性模型中这种方法存在偏差。然而,尚未提出令人信服的潜在理论原因。我们提出了一个新的框架,用于研究非线性模型中倾向得分调整后的治疗效果的偏差和一致性,该框架使用一种简单的几何方法在倾向得分估计量的一致性和非线性模型的可折叠性之间建立联系。在此框架下,我们证明在结果模型中对倾向得分进行调整会导致将观察到的协变量分解为倾向得分和一个余项。从不可折叠的回归模型中省略这个余项会导致条件优势比和条件风险比的估计有偏差,但对条件率比没有影响。我们通过模拟研究进一步表明,这些倾向得分调整后的估计量中的偏差会随着治疗效果大小的增加、协变量效应的增加以及治疗模型与结果模型中协变量系数之间差异的增大而增加。