Suppr超能文献

倾向得分匹配:我们应该在设计观察性研究时使用它吗?

Propensity Score Matching: should we use it in designing observational studies?

作者信息

Wan Fei

机构信息

Division of Public Health Sciences, Washington University in St Louis, 660 S. Euclid Ave, St Louis, MO, 63110, USA.

出版信息

BMC Med Res Methodol. 2025 Jan 29;25(1):25. doi: 10.1186/s12874-025-02481-w.

Abstract

BACKGROUND

Propensity Score Matching (PSM) stands as a widely embraced method in comparative effectiveness research. PSM crafts matched datasets, mimicking some attributes of randomized designs, from observational data. In a valid PSM design where all baseline confounders are measured and matched, the confounders would be balanced, allowing the treatment status to be considered as if it were randomly assigned. Nevertheless, recent research has unveiled a different facet of PSM, termed "the PSM paradox". As PSM approaches exact matching by progressively pruning matched sets in order of decreasing propensity score distance, it can paradoxically lead to greater covariate imbalance, heightened model dependence, and increased bias, contrary to its intended purpose.

METHODS

We used analytic formula, simulation, and literature to demonstrate that this paradox stems from the misuse of metrics for assessing chance imbalance and bias.

RESULTS

Firstly, matched pairs typically exhibit different covariate values despite having identical propensity scores. However, this disparity represents a "chance" difference and will average to zero over a large number of matched pairs. Common distance metrics cannot capture this "chance" nature in covariate imbalance, instead reflecting increasing variability in chance imbalance as units are pruned and the sample size diminishes. Secondly, the largest estimate among numerous fitted models, because of uncertainty among researchers over the correct model, was used to determine statistical bias. This cherry-picking procedure ignores the most significant benefit of matching design-reducing model dependence based on its robustness against model misspecification bias.

CONCLUSIONS

We conclude that the PSM paradox is not a legitimate concern and should not stop researchers from using PSM designs.

摘要

背景

倾向得分匹配(PSM)是比较效果研究中一种广泛应用的方法。PSM通过观测数据构建匹配数据集,模拟随机设计的一些属性。在一个有效的PSM设计中,所有基线混杂因素都被测量并匹配,混杂因素将达到平衡,从而可以将治疗状态视为随机分配。然而,最近的研究揭示了PSM的另一个方面,即“PSM悖论”。随着PSM通过按倾向得分距离递减顺序逐步修剪匹配集来实现精确匹配,它可能会自相矛盾地导致更大的协变量不平衡、更高的模型依赖性和更大的偏差,这与它的预期目的背道而驰。

方法

我们使用解析公式、模拟和文献来证明这个悖论源于对评估偶然不平衡和偏差的指标的误用。

结果

首先,尽管匹配对具有相同的倾向得分,但它们通常表现出不同的协变量值。然而,这种差异代表了一种“偶然”差异,在大量匹配对中其平均值将为零。常见的距离度量无法捕捉协变量不平衡中的这种“偶然”性质,而是随着单元被修剪和样本量减小,反映出偶然不平衡中越来越大的变异性。其次,由于研究人员对正确模型存在不确定性,则使用众多拟合模型中的最大估计值来确定统计偏差。这种挑选过程忽略了匹配设计的最重要好处——基于其对模型错误设定偏差的稳健性来降低模型依赖性。

结论

我们得出结论,PSM悖论并非合理担忧,不应阻止研究人员使用PSM设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf63/11776168/d03a1bafa75d/12874_2025_2481_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验