Suppr超能文献

利用手机数据对空气污染暴露情况进行动态评估。

Dynamic assessment of exposure to air pollution using mobile phone data.

作者信息

Dewulf Bart, Neutens Tijs, Lefebvre Wouter, Seynaeve Gerdy, Vanpoucke Charlotte, Beckx Carolien, Van de Weghe Nico

机构信息

Department of Geography, Ghent University, Krijgslaan 281, S8, 9000, Ghent, Belgium.

Research Foundation Flanders, Egmontstraat 5, 1000, Brussels, Belgium.

出版信息

Int J Health Geogr. 2016 Apr 21;15:14. doi: 10.1186/s12942-016-0042-z.

Abstract

BACKGROUND

Exposure to air pollution can have major health impacts, such as respiratory and cardiovascular diseases. Traditionally, only the air pollution concentration at the home location is taken into account in health impact assessments and epidemiological studies. Neglecting individual travel patterns can lead to a bias in air pollution exposure assessments.

METHODS

In this work, we present a novel approach to calculate the daily exposure to air pollution using mobile phone data of approximately 5 million mobile phone users living in Belgium. At present, this data is collected and stored by telecom operators mainly for management of the mobile network. Yet it represents a major source of information in the study of human mobility. We calculate the exposure to NO2 using two approaches: assuming people stay at home the entire day (traditional static approach), and incorporating individual travel patterns using their location inferred from their use of the mobile phone network (dynamic approach).

RESULTS

The mean exposure to NO2 increases with 1.27 μg/m(3) (4.3%) during the week and with 0.12 μg/m(3) (0.4%) during the weekend when incorporating individual travel patterns. During the week, mostly people living in municipalities surrounding larger cities experience the highest increase in NO2 exposure when incorporating their travel patterns, probably because most of them work in these larger cities with higher NO2 concentrations.

CONCLUSIONS

It is relevant for health impact assessments and epidemiological studies to incorporate individual travel patterns in estimating air pollution exposure. Mobile phone data is a promising data source to determine individual travel patterns, because of the advantages (e.g. low costs, large sample size, passive data collection) compared to travel surveys, GPS, and smartphone data (i.e. data captured by applications on smartphones).

摘要

背景

暴露于空气污染中会对健康产生重大影响,如引发呼吸道和心血管疾病。传统上,健康影响评估和流行病学研究仅考虑家庭所在地的空气污染浓度。忽视个人出行模式可能导致空气污染暴露评估出现偏差。

方法

在本研究中,我们提出了一种新颖的方法,利用比利时约500万手机用户的手机数据来计算每日空气污染暴露量。目前,这些数据由电信运营商收集和存储,主要用于移动网络管理。然而,它是人类流动性研究中的一个重要信息来源。我们使用两种方法计算二氧化氮暴露量:一种是假设人们一整天都待在家里(传统静态方法),另一种是利用从手机网络使用情况推断出的位置纳入个人出行模式(动态方法)。

结果

纳入个人出行模式后,工作日期间二氧化氮平均暴露量增加1.27μg/m³(4.3%),周末增加0.12μg/m³(0.4%)。在工作日,纳入出行模式后,大多居住在大城市周边市镇的人二氧化氮暴露量增加最多,这可能是因为他们中的大多数人在二氧化氮浓度较高的这些大城市工作。

结论

在估计空气污染暴露时纳入个人出行模式对健康影响评估和流行病学研究具有重要意义。由于与出行调查、全球定位系统和智能手机数据(即智能手机应用程序捕获的数据)相比具有优势(如成本低、样本量大、被动数据收集),手机数据是确定个人出行模式的一个有前景的数据源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/274a/4839157/37b0e0ef41d4/12942_2016_42_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验