Suppr超能文献

基于并行水平集的解剖 MRI 先验的 PET 重建。

PET Reconstruction With an Anatomical MRI Prior Using Parallel Level Sets.

出版信息

IEEE Trans Med Imaging. 2016 Sep;35(9):2189-2199. doi: 10.1109/TMI.2016.2549601. Epub 2016 Apr 14.

Abstract

The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) offers unique possibilities. In this paper we aim to exploit the high spatial resolution of MRI to enhance the reconstruction of simultaneously acquired PET data. We propose a new prior to incorporate structural side information into a maximum a posteriori reconstruction. The new prior combines the strengths of previously proposed priors for the same problem: it is very efficient in guiding the reconstruction at edges available from the side information and it reduces locally to edge-preserving total variation in the degenerate case when no structural information is available. In addition, this prior is segmentation-free, convex and no a priori assumptions are made on the correlation of edge directions of the PET and MRI images. We present results for a simulated brain phantom and for real data acquired by the Siemens Biograph mMR for a hardware phantom and a clinical scan. The results from simulations show that the new prior has a better trade-off between enhancing common anatomical boundaries and preserving unique features than several other priors. Moreover, it has a better mean absolute bias-to-mean standard deviation trade-off and yields reconstructions with superior relative l-error and structural similarity index. These findings are underpinned by the real data results from a hardware phantom and a clinical patient confirming that the new prior is capable of promoting well-defined anatomical boundaries.

摘要

正电子发射断层扫描(PET)和磁共振成像(MRI)的结合提供了独特的可能性。本文旨在利用 MRI 的高空间分辨率来增强同时采集的 PET 数据的重建。我们提出了一种新的先验方法,将结构侧信息纳入最大后验重建中。新的先验结合了之前为同一问题提出的先验的优点:它在可用的边缘信息处引导重建非常有效,并且在没有结构信息可用的退化情况下,它在局部降低到边缘保持的全变差。此外,该先验是无分割的,凸的,并且对 PET 和 MRI 图像的边缘方向的相关性没有先验假设。我们展示了模拟脑模型和西门子 Biograph mMR 采集的真实数据的结果,用于硬件模型和临床扫描。模拟结果表明,新的先验在增强常见解剖边界和保留独特特征之间具有更好的折衷,优于其他几种先验。此外,它具有更好的平均绝对偏差与平均标准偏差的折衷,并且产生具有更好的相对 l-误差和结构相似性指数的重建。这些发现得到了硬件模型和临床患者的真实数据结果的支持,证实了新的先验能够促进明确定义的解剖边界。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验