Suppr超能文献

基于非光滑先验的列表模式稀疏泊松数据的快速、高效重建及其在飞行时间 PET 中的应用。

Fast and memory-efficient reconstruction of sparse Poisson data in listmode with non-smooth priors with application to time-of-flight PET.

机构信息

Department of Imaging and Pathology, Division of Nuclear Medicine, KU Leuven, Belgium.

Institute of Mathematics and Scientific Computing, University of Graz, Austria.

出版信息

Phys Med Biol. 2022 Jul 27;67(15). doi: 10.1088/1361-6560/ac71f1.

Abstract

Complete time of flight (TOF) sinograms of state-of-the-art TOF PET scanners have a large memory footprint. Currently, they contain ∼4 · 10data bins which amount to ∼17 GB in 32 bit floating point precision. Moreover, their size will continue to increase with advances in the achievable detector TOF resolution and increases in the axial field of view. Using iterative algorithms to reconstruct such enormous TOF sinograms becomes increasingly challenging due to the memory requirements and the computation time needed to evaluate the forward model for every data bin. This is especially true for more advanced optimization algorithms such as the stochastic primal-dual hybrid gradient (SPDHG) algorithm which allows for the use of non-smooth priors for regularization using subsets with guaranteed convergence. SPDHG requires the storage of additional sinograms in memory, which severely limits its application to data sets from state-of-the-art TOF PET systems using conventional computing hardware.Motivated by the generally sparse nature of the TOF sinograms, we propose and analyze a new listmode (LM) extension of the SPDHG algorithm for image reconstruction of sparse data following a Poisson distribution. The new algorithm is evaluated based on realistic 2D and 3D simulationsn, and a real data set acquired on a state-of-the-art TOF PET/CT system. The performance of the newly proposed LM SPDHG algorithm is compared against the conventional sinogram SPDHG and the listmode EM-TV algorithm.We show that the speed of convergence of the proposed LM-SPDHG is equivalent the original SPDHG operating on binned data (TOF sinograms). However, we find that for a TOF PET system with 400 ps TOF resolution and 25 cm axial FOV, the proposed LM-SPDHG reduces the required memory from approximately 56 to 0.7 GB for a short dynamic frame with 10prompt coincidences and to 12.4 GB for a long static acquisition with 5·10prompt coincidences.In contrast to SPDHG, the reduced memory requirements of LM-SPDHG enables a pure GPU implementation on state-of-the-art GPUs-avoiding memory transfers between host and GPU-which will substantially accelerate reconstruction times. This in turn will allow the application of LM-SPDHG in routine clinical practice where short reconstruction times are crucial.

摘要

最先进的 TOF PET 扫描仪的完整飞行时间 (TOF) 正弦图具有很大的内存占用。目前,它们包含约 4·10 个数据-bin,在 32 位浮点精度下达到约 17GB。此外,随着探测器 TOF 分辨率的提高和轴向视野的增加,其大小将继续增加。由于内存要求和为每个数据-bin 评估正向模型所需的计算时间,使用迭代算法来重建如此巨大的 TOF 正弦图变得越来越具有挑战性。对于更先进的优化算法,如随机对偶混合梯度 (SPDHG) 算法,情况更是如此,该算法允许使用非平滑先验进行正则化,使用保证收敛的子集。SPDHG 需要在内存中存储额外的正弦图,这严重限制了其在使用传统计算硬件的最先进的 TOF PET 系统的数据集中的应用。

受 TOF 正弦图通常稀疏的性质的启发,我们提出并分析了一种新的基于列表模式 (LM) 的 SPDHG 算法扩展,用于对泊松分布的稀疏数据进行图像重建。该新算法基于现实的 2D 和 3D 模拟以及在最先进的 TOF PET/CT 系统上采集的真实数据集进行评估。新提出的 LM-SPDHG 算法的性能与传统的正弦图 SPDHG 和列表模式 EM-TV 算法进行了比较。

我们表明,所提出的 LM-SPDHG 的收敛速度与在 bin 数据(TOF 正弦图)上运行的原始 SPDHG 相同。然而,我们发现对于具有 400ps TOF 分辨率和 25cm 轴向 FOV 的 TOF PET 系统,对于具有 10 个瞬时符合的短动态帧,所提出的 LM-SPDHG 将所需内存从大约 56GB 减少到 0.7GB,对于具有 5·10 个瞬时符合的长静态采集,将所需内存从大约 56GB 减少到 0.7GB,所需内存从大约 56GB 减少到 0.7GB,对于具有 5·10 个瞬时符合的长静态采集,将所需内存从大约 56GB 减少到 0.7GB。与 SPDHG 相比,LM-SPDHG 的减少的内存要求允许在最先进的 GPU 上进行纯 GPU 实现——避免主机和 GPU 之间的内存传输——这将大大加速重建时间。这反过来又将允许在常规临床实践中应用 LM-SPDHG,其中短的重建时间至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b60/9361154/b1dd3dbc9640/nihms-1826457-f0001.jpg

相似文献

本文引用的文献

6
PET Reconstruction With an Anatomical MRI Prior Using Parallel Level Sets.基于并行水平集的解剖 MRI 先验的 PET 重建。
IEEE Trans Med Imaging. 2016 Sep;35(9):2189-2199. doi: 10.1109/TMI.2016.2549601. Epub 2016 Apr 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验