Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain. Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain. Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain. Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
Science. 2016 Apr 22;352(6284):437-41. doi: 10.1126/science.aad8038.
Isolated hydrogen atoms absorbed on graphene are predicted to induce magnetic moments. Here we demonstrate that the adsorption of a single hydrogen atom on graphene induces a magnetic moment characterized by a ~20-millielectron volt spin-split state at the Fermi energy. Our scanning tunneling microscopy (STM) experiments, complemented by first-principles calculations, show that such a spin-polarized state is essentially localized on the carbon sublattice opposite to the one where the hydrogen atom is chemisorbed. This atomically modulated spin texture, which extends several nanometers away from the hydrogen atom, drives the direct coupling between the magnetic moments at unusually long distances. By using the STM tip to manipulate hydrogen atoms with atomic precision, it is possible to tailor the magnetism of selected graphene regions.
孤立的氢原子被吸附在石墨烯上被预测会诱导出磁矩。在这里,我们证明了单个氢原子在石墨烯上的吸附会诱导出一个在费米能级处具有约 20 毫电子伏特自旋劈裂态的磁矩。我们的扫描隧道显微镜(STM)实验,辅以第一性原理计算,表明这样一个自旋极化态本质上是局域在与氢原子化学吸附的碳原子子晶格相对的子晶格上。这种原子调制的自旋织构从氢原子延伸数纳米远,驱动了在不寻常长距离处的磁矩的直接耦合。通过使用 STM 针尖以原子精度操纵氢原子,可以定制选定石墨烯区域的磁性。