Université Grenoble Alpes , F-38000 Grenoble, France.
CNRS, Institut NEEL , F-38042 Grenoble, France.
Nano Lett. 2016 May 11;16(5):2938-44. doi: 10.1021/acs.nanolett.5b04710. Epub 2016 Apr 29.
Whereas nanowire (NW)-based devices offer numerous advantages compared to bulk ones, their performances are frequently limited by an incomplete understanding of their properties where surface effect should be carefully considered. Here, we demonstrate the ability to spatially map the electric field and determine the exciton diffusion length in NW by using an electron beam as the single excitation source. This approach is performed on numerous single ZnO NW Schottky diodes whose NW radius vary from 42.5 to 175 nm. The dominant impact of the surface on the NW properties is revealed through the comparison of three different physical quantities recorded on the same NW: electron-beam induced current, cathodoluminescence, and secondary electron signal. Indeed, the space charge region near the Schottky contact exhibits an unusual linear variation with reverse bias whatever the NW radius. On the contrary, the exciton diffusion length is shown to be controlled by the NW radius through surface recombination. This systematic comparison performed on a single ZnO NW demonstrates the power of these complementary techniques in understanding NW properties.
与体材料相比,基于纳米线(NW)的器件具有许多优势,但它们的性能常常受到对其特性认识不完整的限制,在这方面需要仔细考虑表面效应。在这里,我们通过使用电子束作为单个激发源,展示了在空间上绘制电场图并确定 NW 中激子扩散长度的能力。该方法应用于许多单个 ZnO NW 肖特基二极管上,这些 NW 的半径从 42.5nm 到 175nm 不等。通过对同一 NW 上记录的三种不同物理量进行比较,揭示了表面对 NW 性能的主要影响:电子束诱导电流、阴极发光和二次电子信号。事实上,无论 NW 半径如何,肖特基接触附近的空间电荷区都表现出与反向偏压的异常线性变化。相反,激子扩散长度通过表面复合受到 NW 半径的控制。在单个 ZnO NW 上进行的这种系统比较证明了这些互补技术在理解 NW 特性方面的强大功能。