Suppr超能文献

骨骼和肌肉损伤对肌肉祖细胞成骨潜能的影响:组织微环境在异位骨化中的作用

Influence of Bone and Muscle Injuries on the Osteogenic Potential of Muscle Progenitors: Contribution of Tissue Environment to Heterotopic Ossification.

作者信息

Molligan Jeremy, Mitchell Reed, Schon Lew, Achilefu Samuel, Zahoor Talal, Cho Young, Loube Jeffery, Zhang Zijun

机构信息

Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA.

Department of Radiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA.

出版信息

Stem Cells Transl Med. 2016 Jun;5(6):745-53. doi: 10.5966/sctm.2015-0082. Epub 2016 Apr 25.

Abstract

UNLABELLED

: By using surgical mouse models, this study investigated how the tissue environment influences the osteogenic potential of muscle progenitors (m-progenitors) and potentially contributes to heterotopic ossification (HO). Injury was induced by clamping the gluteus maximus and medius (group M) or osteotomy of greater trochanter (group O) on the right hip, as well as combined muscle injury and osteotomy of greater trochanter (group M+O). The gluteus maximus and medius of the operated hips were harvested at days 1, 3, 5, and 10 for isolation of m-progenitors. The cells were cultured in an osteogenic medium for 3 weeks, and osteogenesis was evaluated by matrix mineralization and the expression of osteogenesis-related genes. The expression of type I collagen, RUNX2 (runt-related transcription factor 2), and osteocalcin by the m-progenitors of group M+O was significantly increased, compared with groups M and O. Osteogenic m-progenitors in group O increased the expression of bone morphogenetic protein 2 and also bone morphogenetic protein antagonist differential screening-selected gene aberrative in neuroblastoma. On histology, there was calcium deposition mostly in the muscles of group M+O harvested at day 10. CD56, representing myogenic progenitors, was highly expressed in the m-progenitors isolated from group M (day 10), but m-progenitors of group M+O (day 10) exhibited the highest expression of platelet-derived growth factor receptor α (PDGFR-α), a marker of muscle-derived mesenchymal stem cells (M-MSCs). The expressions of PDGFR-α and RUNX2 were colocalized in osteogenic m-progenitors. The data indicate that the tissue environment simulated in the M+O model is a favorable condition for HO formation. Most likely, M-MSCs, rather than myogenic progenitors, in the m-progenitors participate in HO formation.

SIGNIFICANCE

The prevalence of traumatic heterotopic ossification (HO) is high in war injury. The pathogenesis of HO is still unknown. This study clarified the contribution of a tissue environment created by bone or muscle injury to the formation of HO. The study also found that muscle-derived mesenchymal stem cells, but not myogenic progenitors, are involved in the formation of HO. The findings of this study could be used to strategize the prevention and treatment of HO.

摘要

未标注

本研究通过使用手术小鼠模型,探究了组织环境如何影响肌肉祖细胞(m祖细胞)的成骨潜能以及如何潜在地导致异位骨化(HO)。通过夹闭右侧臀部的臀大肌和臀中肌(M组)或大转子截骨术(O组),以及联合肌肉损伤和大转子截骨术(M+O组)诱导损伤。在术后第1、3、5和10天采集手术侧臀部的臀大肌和臀中肌以分离m祖细胞。将细胞在成骨培养基中培养3周,并通过基质矿化和成骨相关基因的表达来评估成骨情况。与M组和O组相比,M+O组m祖细胞中I型胶原蛋白、RUNX2( runt相关转录因子2)和骨钙素的表达显著增加。O组的成骨m祖细胞增加了骨形态发生蛋白2以及神经母细胞瘤中差异筛选的骨形态发生蛋白拮抗剂异常基因的表达。组织学检查显示,在第10天采集的M+O组肌肉中大多有钙沉积。代表肌源性祖细胞的CD56在从M组(第10天)分离的m祖细胞中高表达,但M+O组(第10天)的m祖细胞表现出肌肉来源间充质干细胞(M-MSCs)标志物血小板衍生生长因子受体α(PDGFR-α)的最高表达。PDGFR-α和RUNX2的表达在成骨m祖细胞中共定位。数据表明,M+O模型模拟的组织环境是HO形成的有利条件。很可能,m祖细胞中的M-MSCs而非肌源性祖细胞参与了HO的形成。

意义

创伤性异位骨化(HO)在战伤中的发生率很高。HO的发病机制仍然未知。本研究阐明了由骨或肌肉损伤产生的组织环境对HO形成的作用。该研究还发现,参与HO形成的是肌肉来源的间充质干细胞而非肌源性祖细胞。本研究的结果可用于制定HO的预防和治疗策略。

相似文献

2
Osteogenic differentiation capacity of human skeletal muscle-derived progenitor cells.
PLoS One. 2013;8(2):e56641. doi: 10.1371/journal.pone.0056641. Epub 2013 Feb 14.
3
Characterization of Cells Isolated from Genetic and Trauma-Induced Heterotopic Ossification.
PLoS One. 2016 Aug 5;11(8):e0156253. doi: 10.1371/journal.pone.0156253. eCollection 2016.
4
Matrine attenuates heterotopic ossification by suppressing TGF-β induced mesenchymal stromal cell migration and osteogenic differentiation.
Biomed Pharmacother. 2020 Jul;127:110152. doi: 10.1016/j.biopha.2020.110152. Epub 2020 May 18.
6
Surgical Excision of Heterotopic Ossification Leads to Re-Emergence of Mesenchymal Stem Cell Populations Responsible for Recurrence.
Stem Cells Transl Med. 2017 Mar;6(3):799-806. doi: 10.5966/sctm.2015-0365. Epub 2016 Oct 5.
8
Osteogenic potential of alpha smooth muscle actin expressing muscle resident progenitor cells.
Bone. 2016 Mar;84:69-77. doi: 10.1016/j.bone.2015.12.010. Epub 2015 Dec 22.
9
Osteogenic lineage commitment of mesenchymal stem cells from patients with ossification of the posterior longitudinal ligament.
Biochem Biophys Res Commun. 2014 Jan 17;443(3):1014-20. doi: 10.1016/j.bbrc.2013.12.080. Epub 2013 Dec 19.
10
Putative heterotopic ossification progenitor cells derived from traumatized muscle.
J Orthop Res. 2009 Dec;27(12):1645-51. doi: 10.1002/jor.20924.

引用本文的文献

2
EARLY SURGERY IN RARE KNEE HETEROTOPIC OSSIFICATION LEADS TO SUCCESSFUL FUNCTIONAL OUTCOME: A CASE REPORT.
J Rehabil Med Clin Commun. 2025 Jan 3;8:41323. doi: 10.2340/jrm-cc.v8.41323. eCollection 2025.
3
The Role of Neuromodulation and Potential Mechanism in Regulating Heterotopic Ossification.
Neurochem Res. 2024 Jul;49(7):1628-1642. doi: 10.1007/s11064-024-04118-8. Epub 2024 Feb 28.
4
Acetabular Reaming Is a Reliable Model to Produce and Characterize Periarticular Heterotopic Ossification of the Hip.
Stem Cells Transl Med. 2022 Aug 23;11(8):876-888. doi: 10.1093/stcltm/szac042.
6
[Research progress of bioreactor for bone tissue engineering].
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2021 May 15;35(5):627-635. doi: 10.7507/1002-1892.202012083.
7
Crosstalk between Bone and Nerves within Bone.
Adv Sci (Weinh). 2021 Feb 10;8(7):2003390. doi: 10.1002/advs.202003390. eCollection 2021 Apr.

本文引用的文献

1
Human Satellite Cell Transplantation and Regeneration from Diverse Skeletal Muscles.
Stem Cell Reports. 2015 Sep 8;5(3):419-34. doi: 10.1016/j.stemcr.2015.07.016.
2
Osteoblasts Have a Neural Origin in Heterotopic Ossification.
Clin Orthop Relat Res. 2015 Sep;473(9):2790-806. doi: 10.1007/s11999-015-4323-9.
3
Myospheres are composed of two cell types: one that is myogenic and a second that is mesenchymal.
PLoS One. 2015 Feb 23;10(2):e0116956. doi: 10.1371/journal.pone.0116956. eCollection 2015.
4
Characterization of discrete subpopulations of progenitor cells in traumatic human extremity wounds.
PLoS One. 2014 Dec 9;9(12):e114318. doi: 10.1371/journal.pone.0114318. eCollection 2014.
5
Adult skeletal muscle stem cells.
Results Probl Cell Differ. 2015;56:191-213. doi: 10.1007/978-3-662-44608-9_9.
6
A comparison of bone regeneration with human mesenchymal stem cells and muscle-derived stem cells and the critical role of BMP.
Biomaterials. 2014 Aug;35(25):6859-70. doi: 10.1016/j.biomaterials.2014.04.113. Epub 2014 May 21.
7
Anatomical details of neurogenic heterotopic ossification anterior to the ankylotic hip.
Pathol Res Pract. 2014 May;210(5):296-300. doi: 10.1016/j.prp.2014.01.007. Epub 2014 Feb 11.
8
Satellite cells: the architects of skeletal muscle.
Curr Top Dev Biol. 2014;107:161-81. doi: 10.1016/B978-0-12-416022-4.00006-8.
9
Intravenous application of CD271-selected mesenchymal stem cells during fracture healing.
J Orthop Trauma. 2014;28 Suppl 1(0 1):S15-9. doi: 10.1097/BOT.0000000000000063.
10
A novel mouse model of trauma induced heterotopic ossification.
J Orthop Res. 2014 Feb;32(2):183-8. doi: 10.1002/jor.22500. Epub 2013 Oct 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验