Suppr超能文献

利用结构信息机器学习在整个蛋白质组中快速预测空间拉链倾向。

Leveraging structure-informed machine learning for fast steric zipper propensity prediction across whole proteomes.

作者信息

Zink Samantha, Qu Songrong, Holton Thomas, Shankar Eesha, Stanley Paulina, Eisenberg David S, Sawaya Michael R, Rodriguez Jose A

机构信息

Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics, STROBE, NSF Science and Technology Center, University of California, Los Angeles (UCLA), Los Angeles, California, United States of America.

Departments of Chemistry and Biochemistry and Biological Chemistry, Howard Hughes Medical Institute, UCLA-DOE Institute, Molecular Biology Institute, UCLA, Los Angeles, California, United States of America.

出版信息

PLoS Comput Biol. 2025 Aug 25;21(8):e1013395. doi: 10.1371/journal.pcbi.1013395. eCollection 2025 Aug.

Abstract

Predicting the amyloid fold and the propensity of peptide segments to adopt amyloid-like structures remain a challenge. However, recent progress has facilitated structure-based prediction of steric zipper propensity and the use of machine learning to accelerate the calculation of predictive models across many scientific areas. Leveraging these advances, we have developed a new approach for rapid proteome-wide assessment of zipper profiles that is informed by four million steric zipper predictions collected over ten years. This collection is used to build a machine learning model capable of rapidly predicting steric zipper propensity, and allowing for the assessment of zippers at both the protein and proteome level. Our predictions show enrichment for zipper forming segments in proteins involved in cell wall reorganization in yeast, highlighting a potential category of interest for experimental characterization. Overall, our predictive model allows for the exploration of amyloid formation across the tree of life and provides a tool for assessment of both novel and designed sequences for zipper density.

摘要

预测淀粉样折叠以及肽段形成淀粉样结构的倾向仍然是一项挑战。然而,最近的进展推动了基于结构的空间拉链倾向预测,并利用机器学习加速了许多科学领域预测模型的计算。利用这些进展,我们开发了一种新方法,用于在全蛋白质组范围内快速评估拉链图谱,该方法基于十年来收集的四百万个空间拉链预测结果。这个数据集用于构建一个机器学习模型,该模型能够快速预测空间拉链倾向,并允许在蛋白质和蛋白质组水平上评估拉链。我们的预测显示,参与酵母细胞壁重组的蛋白质中拉链形成片段富集,突出了一个潜在的值得实验表征的类别。总体而言,我们的预测模型允许探索生命之树上的淀粉样形成,并为评估新序列和设计序列的拉链密度提供了一个工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8398/12413084/b8734c43666b/pcbi.1013395.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验