Suppr超能文献

一种基于CT的影像组学特征用于术前鉴别I-II期和III-IV期结直肠癌的开发与验证

The development and validation of a CT-based radiomics signature for the preoperative discrimination of stage I-II and stage III-IV colorectal cancer.

作者信息

Liang Cuishan, Huang Yanqi, He Lan, Chen Xin, Ma Zelan, Dong Di, Tian Jie, Liang Changhong, Liu Zaiyi

机构信息

Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.

Graduate College, Southern Medical University, Guangzhou, 510515, China.

出版信息

Oncotarget. 2016 May 24;7(21):31401-12. doi: 10.18632/oncotarget.8919.

Abstract

OBJECTIVES

To investigative the predictive ability of radiomics signature for preoperative staging (I-IIvs.III-IV) of primary colorectal cancer (CRC).

METHODS

This study consisted of 494 consecutive patients (training dataset: n=286; validation cohort, n=208) with stage I-IV CRC. A radiomics signature was generated using LASSO logistic regression model. Association between radiomics signature and CRC staging was explored. The classification performance of the radiomics signature was explored with respect to the receiver operating characteristics(ROC) curve.

RESULTS

The 16-feature-based radiomics signature was an independent predictor for staging of CRC, which could successfully categorize CRC into stage I-II and III-IV (p <0.0001) in training and validation dataset. The median of radiomics signature of stage III-IV was higher than stage I-II in the training and validation dataset. As for the classification performance of the radiomics signature in CRC staging, the AUC was 0.792(95%CI:0.741-0.853) with sensitivity of 0.629 and specificity of 0.874. The signature in the validation dataset obtained an AUC of 0.708(95%CI:0.698-0.718) with sensitivity of 0.611 and specificity of 0.680.

CONCLUSIONS

A radiomics signature was developed and validated to be a significant predictor for discrimination of stage I-II from III-IV CRC, which may serve as a complementary tool for the preoperative tumor staging in CRC.

摘要

目的

探讨影像组学特征对原发性结直肠癌(CRC)术前分期(I-II期与III-IV期)的预测能力。

方法

本研究纳入了494例连续的I-IV期CRC患者(训练数据集:n = 286;验证队列,n = 208)。使用LASSO逻辑回归模型生成影像组学特征。探讨影像组学特征与CRC分期之间的关联。通过受试者工作特征(ROC)曲线评估影像组学特征的分类性能。

结果

基于16个特征的影像组学特征是CRC分期的独立预测因子,在训练和验证数据集中能够成功地将CRC分为I-II期和III-IV期(p <0.0001)。在训练和验证数据集中,III-IV期的影像组学特征中位数高于I-II期。至于影像组学特征在CRC分期中的分类性能,AUC为0.792(95%CI:0.741-0.853),敏感性为0.629,特异性为0.874。验证数据集中的特征AUC为0.708(95%CI:0.698-0.718),敏感性为0.611,特异性为0.680。

结论

开发并验证了一种影像组学特征,可作为区分I-II期与III-IV期CRC的重要预测因子,可能作为CRC术前肿瘤分期的补充工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25c7/5058766/1b61edf3035a/oncotarget-07-31401-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验