Suppr超能文献

计算机断层扫描影像组学特征在胃神经内分泌肿瘤患者中的预后价值

Prognostic value of computed tomography radiomics features in patients with gastric neuroendocrine neoplasm.

作者信息

Yang Zhi-Hao, Han Yi-Jing, Cheng Ming, Wang Rui, Li Jing, Zhao Hui-Ping, Gao Jian-Bo

机构信息

Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.

Henan Key Laboratory of Image Diagnosis and Treatment for Digestive System Tumor, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.

出版信息

Front Oncol. 2023 Jun 20;13:1143291. doi: 10.3389/fonc.2023.1143291. eCollection 2023.

Abstract

PURPOSE

The present study aimed to investigate the clinical prognostic significance of radiomics signature (R-signature) in patients with gastric neuroendocrine neoplasm (GNEN).

METHODS AND MATERIALS

A retrospective study of 182 patients with GNEN who underwent dual-phase enhanced computed tomography (CT) scanning was conducted. LASSO-Cox regression analysis was used to screen the features and establish the arterial, venous and the arteriovenous phase combined R-signature, respectively. The association between the optimal R-signature with the best prognostic performance and overall survival (OS) was assessed in the training cohort and verified in the validation cohort. Univariate and multivariate Cox regression analysis were used to identify the significant factors of clinicopathological characteristics for OS. Furthermore, the performance of a combined radiomics-clinical nomogram integrating the R-signature and independent clinicopathological risk factors was evaluated.

RESULTS

The arteriovenous phase combined R-signature had the best performance in predicting OS, and its C-index value was better than the independent arterial and venous phase R-signature (0.803 vs 0.784 and 0.803 vs 0.756, P<0.001, respectively). The optimal R-signature was significantly associated with OS in the training cohort and validation cohort. GNEN patients could be successfully divided into high and low prognostic risk groups with radiomics score median. The combined radiomics-clinical nomogram combining this R-signature and independent clinicopathological risk factors (sex, age, treatment methods, T stage, N stage, M stage, tumor boundary, Ki67, CD56) exhibited significant prognostic superiority over clinical nomogram, R-signature alone, and traditional TNM staging system (C-index, 0.882 vs 0.861, 882 vs 0.803, and 0.882 vs 0.870 respectively, P<0.001). All calibration curves showed remarkable consistency between predicted and actual survival, and decision curve analysis verified the usefulness of the combined radiomics-clinical nomogram for clinical practice.

CONCLUSIONS

The R-signature could be used to stratify patients with GNEN into high and low risk groups. Furthermore, the combined radiomics-clinical nomogram provided better predictive accuracy than other predictive models and might aid clinicians with therapeutic decision-making and patient counseling.

摘要

目的

本研究旨在探讨影像组学特征(R特征)在胃神经内分泌肿瘤(GNEN)患者中的临床预后意义。

方法与材料

对182例行双期增强计算机断层扫描(CT)的GNEN患者进行回顾性研究。采用LASSO-Cox回归分析筛选特征,分别建立动脉期、静脉期及动静脉期联合R特征。在训练队列中评估具有最佳预后性能的最佳R特征与总生存期(OS)之间的关联,并在验证队列中进行验证。采用单因素和多因素Cox回归分析确定OS的临床病理特征的显著因素。此外,还评估了整合R特征和独立临床病理危险因素的联合影像组学-临床列线图的性能。

结果

动静脉期联合R特征在预测OS方面表现最佳,其C指数值优于独立的动脉期和静脉期R特征(分别为0.803对0.784和0.803对0.756,P<0.001)。最佳R特征在训练队列和验证队列中均与OS显著相关。GNEN患者可通过影像组学评分中位数成功分为高、低预后风险组。结合该R特征和独立临床病理危险因素(性别、年龄、治疗方法、T分期、N分期、M分期、肿瘤边界、Ki67、CD56)的联合影像组学-临床列线图在预后方面显示出比临床列线图、单独的R特征和传统TNM分期系统更显著的优势(C指数分别为0.882对0.861、0.882对0.803和0.882对0.870,P<0.001)。所有校准曲线显示预测生存与实际生存之间具有显著一致性,决策曲线分析验证了联合影像组学-临床列线图在临床实践中的有用性。

结论

R特征可用于将GNEN患者分层为高风险和低风险组。此外,联合影像组学-临床列线图比其他预测模型具有更好的预测准确性,可能有助于临床医生进行治疗决策和患者咨询。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af92/10319063/1f9f5e9de08c/fonc-13-1143291-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验