Key Laboratory of Photovoltaic Materials, Department of Physics and Electronics, Henan University, Kaifeng 475004, PR China.
Nanoscale. 2016 May 21;8(19):10198-204. doi: 10.1039/c6nr01658h. Epub 2016 Apr 28.
To fully utilize the multiple exciton generation effects in quantum dots and improve the overall efficiency of the corresponding photovoltaic devices, nanostructuralizing the electron conducting layer turns out to be a feasible strategy. Herein, PbS quantum dot solar cells were fabricated on the basis of morphologically optimized TiO2 nanorod arrays. By inserting a thin layer of CdSe quantum dots into the interface of TiO2 and PbS, a dramatic enhancement in the power conversion efficiency from 4.2% to 5.2% was realized and the resulting efficiency is one of the highest values for quantum dot solar cells based on nanostructuralized buffer layers. The constructed double heterojunction with a cascade type-II energy level alignment is beneficial for promoting photogenerated charge separation and reducing charge recombination, thereby responsible for the performance improvement, as revealed by steady-state analyses as well as ultra-fast photoluminescence and photovoltage decays. Thus this paper provides a good buffer layer to the community of quantum dot solar cells.
为了充分利用量子点中的多激子生成效应并提高相应光伏器件的整体效率,将电子传输层纳米结构化是一种可行的策略。在此,在形态优化的 TiO2 纳米棒阵列上制备了 PbS 量子点太阳能电池。通过在 TiO2 和 PbS 的界面插入一层 CdSe 量子点,实现了功率转换效率从 4.2%到 5.2%的显著提高,所得效率是基于纳米结构化缓冲层的量子点太阳能电池的最高效率之一。具有级联型 II 型能级对准的构建的双异质结有利于促进光生电荷分离并减少电荷复合,从而提高了性能,这一点通过稳态分析以及超快光致发光和光电压衰减得到了证实。因此,本文为量子点太阳能电池领域提供了一种良好的缓冲层。