Suppr超能文献

通过激活磷酸戊糖途径的pfkA缺陷型大肠杆菌联产氢气和乙醇:减少丙酮酸积累

Co-production of hydrogen and ethanol by pfkA-deficient Escherichia coli with activated pentose-phosphate pathway: reduction of pyruvate accumulation.

作者信息

Sundara Sekar Balaji, Seol Eunhee, Mohan Raj Subramanian, Park Sunghoon

机构信息

Department of Chemical and Biomolecular Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, 46241 Republic of Korea.

Centre for Research and Development, PRIST University, Trichy-Thanjavur Road, Vallam, Thanjavur, TN 613 403 India.

出版信息

Biotechnol Biofuels. 2016 Apr 29;9:95. doi: 10.1186/s13068-016-0510-5. eCollection 2016.

Abstract

BACKGROUND

Fermentative hydrogen (H2) production suffers from low carbon-to-H2 yield, to which problem, co-production of ethanol and H2 has been proposed as a solution. For improved co-production of H2 and ethanol, we developed Escherichia coli BW25113 ΔhycA ΔhyaAB ΔhybBC ΔldhA ΔfrdAB Δpta-ackA ΔpfkA (SH8*) and overexpressed Zwf and Gnd, the key enzymes in the pentose-phosphate (PP) pathway (SH8*_ZG). However, the amount of accumulated pyruvate, which was significant (typically 0.20 mol mol(-1) glucose), reduced the co-production yield.

RESULTS

In this study, as a means of reducing pyruvate accumulation and improving co-production of H2 and ethanol, we developed and studied E. coli SH9*_ZG with functional acetate production pathway for conversion of acetyl-CoA to acetate (pta-ackA (+)). Our results indicated that the presence of the acetate pathway completely eliminated pyruvate accumulation and substantially improved the co-production of H2 and ethanol, enabling yields of 1.88 and 1.40 mol, respectively, from 1 mol glucose. These yields, significantly, are close to the theoretical maximums of 1.67 mol H2 and 1.67 mol ethanol. To better understand the glycolytic flux distribution, glycolytic flux prediction and RT-PCR analyses were performed.

CONCLUSION

The presence of the acetate pathway along with activation of the PP pathway eliminated pyruvate accumulation, thereby significantly improving co-production of H2 and ethanol. Our strategy is applicable to anaerobic production of biofuels and biochemicals, both of which processes demand high NAD(P)H.

摘要

背景

发酵产氢存在低碳氢产率的问题,针对此问题,有人提出联产乙醇和氢气作为解决方案。为了提高氢气和乙醇的联产效果,我们构建了大肠杆菌BW25113 ΔhycA ΔhyaAB ΔhybBC ΔldhA ΔfrdAB Δpta-ackA ΔpfkA(SH8*),并过表达了戊糖磷酸途径(PP途径)中的关键酶Zwf和Gnd(SH8*_ZG)。然而,大量积累的丙酮酸(通常为0.20 mol mol⁻¹葡萄糖)降低了联产产率。

结果

在本研究中,作为减少丙酮酸积累和提高氢气与乙醇联产的一种方法,我们构建并研究了具有功能性乙酸生成途径以将乙酰辅酶A转化为乙酸的大肠杆菌SH9*_ZG(pta-ackA(+))。我们的结果表明,乙酸途径的存在完全消除了丙酮酸积累,并显著提高了氢气和乙醇的联产效果,1 mol葡萄糖分别产生1.88 mol和1.40 mol的产率。值得注意的是,这些产率接近1.67 mol氢气和1.67 mol乙醇的理论最大值。为了更好地理解糖酵解通量分布,我们进行了糖酵解通量预测和逆转录-聚合酶链反应分析。

结论

乙酸途径的存在以及PP途径的激活消除了丙酮酸积累,从而显著提高了氢气和乙醇的联产效果。我们的策略适用于厌氧生产生物燃料和生物化学品,这两个过程都需要大量的NAD(P)H。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18ad/4850720/b2e310b40c25/13068_2016_510_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验