Hassan Bilal, Raja Gulistan, Hassan Taimur, Usman Akram M
J Opt Soc Am A Opt Image Sci Vis. 2016 Apr 1;33(4):455-63. doi: 10.1364/JOSAA.33.000455.
Macular edema (ME) and central serous retinopathy (CSR) are two macular diseases that affect the central vision of a person if they are left untreated. Optical coherence tomography (OCT) imaging is the latest eye examination technique that shows a cross-sectional region of the retinal layers and that can be used to detect many retinal disorders in an early stage. Many researchers have done clinical studies on ME and CSR and reported significant findings in macular OCT scans. However, this paper proposes an automated method for the classification of ME and CSR from OCT images using a support vector machine (SVM) classifier. Five distinct features (three based on the thickness profiles of the sub-retinal layers and two based on cyst fluids within the sub-retinal layers) are extracted from 30 labeled images (10 ME, 10 CSR, and 10 healthy), and SVM is trained on these. We applied our proposed algorithm on 90 time-domain OCT (TD-OCT) images (30 ME, 30 CSR, 30 healthy) of 73 patients. Our algorithm correctly classified 88 out of 90 subjects with accuracy, sensitivity, and specificity of 97.77%, 100%, and 93.33%, respectively.
黄斑水肿(ME)和中心性浆液性视网膜病变(CSR)是两种黄斑疾病,如果不进行治疗,会影响人的中心视力。光学相干断层扫描(OCT)成像是最新的眼部检查技术,它能显示视网膜各层的横截面区域,可用于早期检测许多视网膜疾病。许多研究人员对ME和CSR进行了临床研究,并在黄斑OCT扫描中报告了重要发现。然而,本文提出了一种使用支持向量机(SVM)分类器从OCT图像中对ME和CSR进行分类的自动化方法。从30幅标记图像(10幅ME、10幅CSR和10幅健康图像)中提取了五个不同的特征(三个基于视网膜下各层的厚度分布,两个基于视网膜下各层内的囊液),并在此基础上对SVM进行训练。我们将所提出的算法应用于73名患者的90幅时域OCT(TD - OCT)图像(30幅ME、30幅CSR、30幅健康图像)。我们的算法正确分类了90名受试者中的88名,准确率、灵敏度和特异性分别为97.77%、100%和93.33%。