Suppr超能文献

具有未知误差密度的函数型部分线性模型的贝叶斯带宽估计与半度量选择

Bayesian bandwidth estimation and semi-metric selection for a functional partial linear model with unknown error density.

作者信息

Shang Han Lin

机构信息

Research School of Finance, Actuarial Studies and Statistics, Australian National University, Canberra, Australia.

Department of Actuarial Studies and Business Analytics, Macquarie University, Sydney, Australia.

出版信息

J Appl Stat. 2020 Mar 3;48(4):583-604. doi: 10.1080/02664763.2020.1736527. eCollection 2021.

Abstract

This study examines the optimal selections of bandwidth and semi-metric for a functional partial linear model. Our proposed method begins by estimating the unknown error density using a kernel density estimator of residuals, where the regression function, consisting of parametric and nonparametric components, can be estimated by functional principal component and functional Nadayara-Watson estimators. The estimation accuracy of the regression function and error density crucially depends on the optimal estimations of bandwidth and semi-metric. A Bayesian method is utilized to simultaneously estimate the bandwidths in the regression function and kernel error density by minimizing the Kullback-Leibler divergence. For estimating the regression function and error density, a series of simulation studies demonstrate that the functional partial linear model gives improved estimation and forecast accuracies compared with the functional principal component regression and functional nonparametric regression. Using a spectroscopy dataset, the functional partial linear model yields better forecast accuracy than some commonly used functional regression models. As a by-product of the Bayesian method, a pointwise prediction interval can be obtained, and marginal likelihood can be used to select the optimal semi-metric.

摘要

本研究考察了函数型部分线性模型的带宽和半度量的最优选择。我们提出的方法首先使用残差的核密度估计器来估计未知的误差密度,其中由参数和非参数分量组成的回归函数可以通过函数主成分估计器和函数 Nadayara-Watson 估计器来估计。回归函数和误差密度的估计精度关键取决于带宽和半度量的最优估计。利用贝叶斯方法通过最小化 Kullback-Leibler 散度来同时估计回归函数中的带宽和核误差密度。对于回归函数和误差密度的估计,一系列模拟研究表明,与函数主成分回归和函数非参数回归相比,函数型部分线性模型具有更高的估计和预测精度。使用一个光谱数据集,函数型部分线性模型比一些常用的函数回归模型具有更好的预测精度。作为贝叶斯方法的一个副产品,可以得到逐点预测区间,并且边际似然可用于选择最优半度量。

相似文献

1
Bayesian bandwidth estimation and semi-metric selection for a functional partial linear model with unknown error density.
J Appl Stat. 2020 Mar 3;48(4):583-604. doi: 10.1080/02664763.2020.1736527. eCollection 2021.
2
Variable Selection in Kernel Regression Using Measurement Error Selection Likelihoods.
J Am Stat Assoc. 2017;112(520):1587-1597. doi: 10.1080/01621459.2016.1222287. Epub 2017 Jul 19.
3
A New Monte Carlo Method for Estimating Marginal Likelihoods.
Bayesian Anal. 2018 Jun;13(2):311-333. doi: 10.1214/17-BA1049. Epub 2017 Feb 28.
4
Direct Density Derivative Estimation.
Neural Comput. 2016 Jun;28(6):1101-40. doi: 10.1162/NECO_a_00835. Epub 2016 May 3.
5
Reduced bias nonparametric lifetime density and hazard estimation.
Test (Madr). 2020 Sep;29(3):704-727. doi: 10.1007/s11749-019-00677-z. Epub 2019 Aug 17.
6
Monte Carlo methods for nonparametric regression with heteroscedastic measurement error.
Biometrics. 2018 Jun;74(2):498-505. doi: 10.1111/biom.12765. Epub 2017 Sep 15.
7
Smoothing level selection for density estimators based on the moments.
J Appl Stat. 2023 Nov 7;51(11):2232-2257. doi: 10.1080/02664763.2023.2277125. eCollection 2024.
8
A robust estimation method for the linear regression model parameters with correlated error terms and outliers.
J Appl Stat. 2021 Feb 4;49(7):1663-1676. doi: 10.1080/02664763.2021.1881454. eCollection 2022.
9
Incorporating the neutrosophic framework into kernel regression for predictive mean estimation.
Heliyon. 2024 Jan 29;10(3):e25471. doi: 10.1016/j.heliyon.2024.e25471. eCollection 2024 Feb 15.
10
Bias Reduction and Metric Learning for Nearest-Neighbor Estimation of Kullback-Leibler Divergence.
Neural Comput. 2018 Jul;30(7):1930-1960. doi: 10.1162/neco_a_01092. Epub 2018 Jun 14.

引用本文的文献

1
Methods for scalar-on-function regression.
Int Stat Rev. 2017 Aug;85(2):228-249. doi: 10.1111/insr.12163. Epub 2016 Feb 23.

本文引用的文献

1
Methods for scalar-on-function regression.
Int Stat Rev. 2017 Aug;85(2):228-249. doi: 10.1111/insr.12163. Epub 2016 Feb 23.
2
Penalized Functional Regression.
J Comput Graph Stat. 2011 Dec 1;20(4):830-851. doi: 10.1198/jcgs.2010.10007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验