Valenzuela Ricardo A, Micheva Kristina D, Kiraly Marianna, Li Dong, Madison Daniel V
Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA.
Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA.
J Neurosci Methods. 2016 Aug 1;268:43-52. doi: 10.1016/j.jneumeth.2016.04.017. Epub 2016 Apr 30.
The ability to correlate plastic changes in synaptic physiology with changes in synaptic anatomy has been very limited in the central nervous system because of shortcomings in existing methods for recording the activity of specific CNS synapses and then identifying and studying the same individual synapses on an anatomical level.
We introduce here a novel approach that combines two existing methods: paired neuron electrophysiological recording and array tomography, allowing for the detailed molecular and anatomical study of synapses with known physiological properties.
The complete mapping of a neuronal pair allows determining the exact number of synapses in the pair and their location. We have found that the majority of close appositions between the presynaptic axon and the postsynaptic dendrite in the pair contain synaptic specializations. The average release probability of the synapses between the two neurons in the pair is low, below 0.2, consistent with previous studies of these connections. Other questions, such as receptor distribution within synapses, can be addressed more efficiently by identifying only a subset of synapses using targeted partial reconstructions. In addition, time sensitive events can be captured with fast chemical fixation.
Compared to existing methods, the present approach is the only one that can provide detailed molecular and anatomical information of electrophysiologically-characterized individual synapses.
This method will allow for addressing specific questions about the properties of identified CNS synapses, even when they are buried within a cloud of millions of other brain circuit elements.
由于现有方法在记录特定中枢神经系统(CNS)突触活动,然后在解剖学水平上识别和研究同一个体突触方面存在缺陷,在中枢神经系统中将突触生理学的可塑性变化与突触解剖学变化相关联的能力一直非常有限。
我们在此介绍一种新颖的方法,该方法结合了两种现有方法:配对神经元电生理记录和阵列断层扫描,从而能够对具有已知生理特性的突触进行详细的分子和解剖学研究。
对一对神经元的完整映射可以确定该对中突触的确切数量及其位置。我们发现,该对中突触前轴突与突触后树突之间的大多数紧密并列都包含突触特化结构。该对中两个神经元之间突触的平均释放概率较低,低于0.2,这与先前对这些连接的研究一致。通过使用靶向部分重建仅识别突触的一个子集,可以更有效地解决其他问题,例如突触内受体的分布。此外,快速化学固定可以捕捉对时间敏感的事件。
与现有方法相比,本方法是唯一能够提供具有电生理特征的单个突触详细分子和解剖学信息的方法。
即使已识别的中枢神经系统突触埋藏在数百万个其他脑回路元件之中,该方法也将有助于解决有关其特性的特定问题。