Chakraborty Saptarshi, Liu Anran, Ball Robert, Markatou Marianthi
Department of Biostatistics, University at Buffalo, Buffalo, New York, USA.
Office of Surveillance and Epidemiology, Center for Drug Evaluation and Research, U.S. Food & Drug Administration, Silver Spring, Maryland, USA.
Stat Med. 2022 Nov 30;41(27):5395-5420. doi: 10.1002/sim.9575. Epub 2022 Sep 30.
The safety of medical products due to adverse events (AE) from drugs, therapeutic biologics, and medical devices is a major public health concern worldwide. Likelihood ratio test (LRT) approaches to pharmacovigilance constitute a class of rigorous statistical tools that permit objective identification of AEs of a specific drug and/or a class of drugs cataloged in spontaneous reporting system databases. However, the existing LRT approaches encounter certain theoretical and computational challenges when an underlying Poisson model assumption is violated, including in cases of zero-inflated data. We briefly review existing LRT approaches and propose a novel class of (pseudo-) LRT methods to address these challenges. Our approach uses an alternative parametrization to formulate a unified framework with a common test statistic that can handle both Poisson and zero-inflated Poisson (ZIP) models. The proposed framework is computationally efficient, and it reveals deeper insights into the comparative behaviors of the Poisson and the ZIP models for handling AE data. Our extensive simulation studies document notably superior performances of the proposed methods over existing approaches particularly under zero-inflation, both in terms of statistical (eg, much better control of the nominal level and false discovery rate with substantially enhanced power) and computational ( 100-500-fold gains in average running times) performance metrics. An application of our method on the statin drug class from the FDA FAERS database reveals interesting insights on potential AEs. An R package, pvLRT, implementing our methods has been released in the public domain.
药品、治疗性生物制品和医疗器械引发的不良事件(AE)对医疗产品安全性构成的影响是全球主要的公共卫生问题。用于药物警戒的似然比检验(LRT)方法是一类严格的统计工具,可客观识别自发报告系统数据库中特定药物和/或一类药物的不良事件。然而,当潜在的泊松模型假设不成立时,包括在零膨胀数据的情况下,现有的LRT方法会遇到某些理论和计算挑战。我们简要回顾了现有的LRT方法,并提出了一类新颖的(伪)LRT方法来应对这些挑战。我们的方法使用替代参数化来构建一个统一的框架,该框架具有一个通用的检验统计量,能够处理泊松模型和零膨胀泊松(ZIP)模型。所提出的框架计算效率高,并且能更深入地洞察泊松模型和ZIP模型在处理不良事件数据方面的比较行为。我们广泛的模拟研究表明,所提出的方法在性能上明显优于现有方法,特别是在零膨胀情况下,在统计(例如,能更好地控制名义水平和错误发现率,同时显著提高功效)和计算(平均运行时间提高100 - 500倍)性能指标方面。我们将该方法应用于美国食品药品监督管理局(FDA)不良事件报告系统(FAERS)数据库中的他汀类药物类别,揭示了关于潜在不良事件的有趣见解。一个实现我们方法的R包pvLRT已在公共领域发布。