Suppr超能文献

松萝酸包封于脂质体中的效果及其与抗结核药物对耐多药结核临床分离株的相互作用。

Effects of the encapsulation of usnic acid into liposomes and interactions with antituberculous agents against multidrug-resistant tuberculosis clinical isolates.

作者信息

Ferraz-Carvalho Rafaela S, Pereira Marcela A, Linhares Leonardo A, Lira-Nogueira Mariane Cb, Cavalcanti Isabella Mf, Santos-Magalhães Nereide S, Montenegro Lílian Ml

机构信息

Laboratório de Imunopatologia Keizo-Asami, Universidade Federal de Pernambuco, Recife, PE, Brasil.

Departamento de Imunologia, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, PE, Brasil.

出版信息

Mem Inst Oswaldo Cruz. 2016 May;111(5):330-4. doi: 10.1590/0074-02760150454. Epub 2016 Apr 29.

Abstract

Mycobacterium tuberculosis (Mtb) has acquired resistance and consequently the antibiotic therapeutic options available against this microorganism are limited. In this scenario, the use of usnic acid (UA), a natural compound, encapsulated into liposomes is proposed as a new approach in multidrug-resistant tuberculosis (MDR-TB) therapy. Thus the aim of this study was to evaluate the effect of the encapsulation of UA into liposomes, as well as its combination with antituberculous agents such as rifampicin (RIF) and isoniazid (INH) against MDR-TB clinical isolates. The in vitro antimycobacterial activity of UA-loaded liposomes (UA-Lipo) against MDR-TB was assessed by the microdilution method. The in vitro interaction of UA with antituberculous agents was carried out using checkerboard method. Minimal inhibitory concentration values were 31.25 and 0.98 µg/mL for UA and UA-Lipo, respectively. The results exhibited a synergistic interaction between RIF and UA [fractional inhibitory concentration index (FICI) = 0.31] or UA-Lipo (FICI = 0.28). Regarding INH, the combination of UA or UA-Lipo revealed no marked effect (FICI = 1.30-2.50). The UA-Lipo may be used as a dosage form to improve the antimycobacterial activity of RIF, a first-line drug for the treatment of infections caused by Mtb.

摘要

结核分枝杆菌(Mtb)已产生耐药性,因此针对这种微生物的抗生素治疗选择有限。在这种情况下,将天然化合物松萝酸(UA)包裹在脂质体中作为耐多药结核病(MDR-TB)治疗的一种新方法被提出。因此,本研究的目的是评估将UA包裹在脂质体中的效果,以及其与抗结核药物如利福平(RIF)和异烟肼(INH)联合使用对MDR-TB临床分离株的作用。通过微量稀释法评估负载UA的脂质体(UA-Lipo)对MDR-TB的体外抗分枝杆菌活性。使用棋盘法进行UA与抗结核药物的体外相互作用研究。UA和UA-Lipo的最低抑菌浓度值分别为31.25和0.98μg/mL。结果显示RIF与UA [分数抑菌浓度指数(FICI)= 0.31]或UA-Lipo(FICI = 0.28)之间存在协同相互作用。对于INH,UA或UA-Lipo的联合使用未显示明显效果(FICI = 1.30 - 2.50)。UA-Lipo可作为一种剂型来提高RIF(一种治疗由Mtb引起感染的一线药物)的抗分枝杆菌活性。

相似文献

3
In vitrouptake and antimycobacterial activity of liposomal usnic acid formulation.
J Liposome Res. 2009;19(1):49-58. doi: 10.1080/08982100802564628.
4
Combinatory activity of linezolid and levofloxacin with antituberculosis drugs in Mycobacterium tuberculosis.
Tuberculosis (Edinb). 2018 Jul;111:41-44. doi: 10.1016/j.tube.2018.05.005. Epub 2018 May 19.
5
Synergistic effect of two combinations of antituberculous drugs against Mycobacterium tuberculosis.
Tuberculosis (Edinb). 2012 May;92(3):260-3. doi: 10.1016/j.tube.2012.01.005. Epub 2012 Feb 16.
8
Drug resistance in Mycobacterium tuberculosis clinical isolates from Brazil: phenotypic and genotypic methods.
Biomed Pharmacother. 2011 Sep;65(6):456-9. doi: 10.1016/j.biopha.2011.04.021. Epub 2011 Jun 12.

引用本文的文献

2
Novel Drug Delivery Systems: An Important Direction for Drug Innovation Research and Development.
Pharmaceutics. 2024 May 16;16(5):674. doi: 10.3390/pharmaceutics16050674.
3
Advanced drug delivery and therapeutic strategies for tuberculosis treatment.
J Nanobiotechnology. 2023 Nov 9;21(1):414. doi: 10.1186/s12951-023-02156-y.
4
Toxicity of Usnic Acid: A Narrative Review.
J Toxicol. 2022 Oct 19;2022:8244340. doi: 10.1155/2022/8244340. eCollection 2022.
5
Nanobiosystems for Antimicrobial Drug-Resistant Infections.
Nanomaterials (Basel). 2021 Apr 22;11(5):1075. doi: 10.3390/nano11051075.
6
Synergistic Effect between Usnic Acid and Polymyxin B against Resistant Clinical Isolates of .
Evid Based Complement Alternat Med. 2020 Aug 12;2020:9852145. doi: 10.1155/2020/9852145. eCollection 2020.
7
Nano- and Microcarriers as Drug Delivery Systems for Usnic Acid: Review of Literature.
Pharmaceutics. 2020 Feb 15;12(2):156. doi: 10.3390/pharmaceutics12020156.

本文引用的文献

1
Pulmonary drug delivery systems for tuberculosis treatment.
Int J Pharm. 2015 Jan 30;478(2):517-29. doi: 10.1016/j.ijpharm.2014.12.009. Epub 2014 Dec 10.
3
Nanostructured drug delivery for better management of tuberculosis.
J Control Release. 2014 Jun 28;184:36-50. doi: 10.1016/j.jconrel.2014.04.009. Epub 2014 Apr 13.
4
Levofloxacin-proliposomes: opportunities for use in lung tuberculosis.
Pharmaceutics. 2012 Aug 13;4(3):385-412. doi: 10.3390/pharmaceutics4030385.
6
Evaluation of antimycobacterial activity of a sulphonamide derivative.
Tuberculosis (Edinb). 2013 May;93(3):318-21. doi: 10.1016/j.tube.2013.02.003. Epub 2013 Mar 7.
7
In vitro effect of three-drug combinations of antituberculous agents against multidrug-resistant Mycobacterium tuberculosis isolates.
Int J Antimicrob Agents. 2013 Mar;41(3):278-80. doi: 10.1016/j.ijantimicag.2012.11.011. Epub 2013 Jan 9.
8
Interplay of mycolic acids, antimycobacterial compounds and pulmonary surfactant membrane: a biophysical approach to disease.
Biochim Biophys Acta. 2013 Feb;1828(2):896-905. doi: 10.1016/j.bbamem.2012.09.015. Epub 2012 Sep 26.
10
Liposomes as delivery systems for antibiotics.
Int J Pharm. 2010 Mar 15;387(1-2):187-98. doi: 10.1016/j.ijpharm.2009.11.033. Epub 2009 Dec 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验