Suppr超能文献

在复杂进化模型下改进系统发育回归。

Improving phylogenetic regression under complex evolutionary models.

作者信息

Mazel Florent, Davies T Jonathan, Georges Damien, Lavergne Sébastien, Thuiller Wilfried, Peres-NetoO Pedro R

出版信息

Ecology. 2016 Feb;97(2):286-93. doi: 10.1890/15-0086.1.

Abstract

Phylogenetic Generalized Least Square (PGLS) is the tool of choice among phylogenetic comparative methods to measure the correlation between species features such as morphological and life-history traits or niche characteristics. In its usual form, it assumes that the residual variation follows a homogenous model of evolution across the branches of the phylogenetic tree. Since a homogenous model of evolution is unlikely to be realistic in nature, we explored the robustness of the phylogenetic regression when this assumption is violated. We did so by simulating a set of traits under various heterogeneous models of evolution, and evaluating the statistical performance (type I error [the percentage of tests based on samples that incorrectly rejected a true null hypothesis] and power [the percentage of tests that correctly rejected a false null hypothesis]) of classical phylogenetic regression. We found that PGLS has good power but unacceptable type I error rates. This finding is important since this method has been increasingly used in comparative analyses over the last decade. To address this issue, we propose a simple solution based on transforming the underlying variance-covariance matrix to adjust for model heterogeneity within PGLS. We suggest that heterogeneous rates of evolution might be particularly prevalent in large phylogenetic trees, while most current approaches assume a homogenous rate of evolution. Our analysis demonstrates that overlooking rate heterogeneity can result in inflated type I errors, thus misleading comparative analyses. We show that it is possible to correct for this bias even when the underlying model of evolution is not known a priori.

摘要

系统发育广义最小二乘法(PGLS)是系统发育比较方法中用于衡量物种特征(如形态和生活史特征或生态位特征)之间相关性的首选工具。在其通常形式中,它假设残差变异遵循系统发育树各分支上的同质进化模型。由于同质进化模型在自然界中不太可能是现实的,我们探讨了违反这一假设时系统发育回归的稳健性。我们通过在各种异质进化模型下模拟一组性状,并评估经典系统发育回归的统计性能(I型错误[基于样本错误拒绝真零假设的测试百分比]和检验功效[正确拒绝假零假设的测试百分比])来做到这一点。我们发现PGLS具有良好的功效,但I型错误率不可接受。这一发现很重要,因为在过去十年中,这种方法在比较分析中越来越多地被使用。为了解决这个问题,我们提出了一个简单的解决方案,即基于变换潜在的方差协方差矩阵来调整PGLS中的模型异质性。我们认为,进化速率的异质性在大型系统发育树中可能特别普遍,而目前大多数方法都假设进化速率是同质的。我们的分析表明,忽略速率异质性会导致I型错误膨胀,从而误导比较分析。我们表明,即使事先不知道潜在的进化模型,也有可能纠正这种偏差。

相似文献

引用本文的文献

1
Discriminating models of trait evolution.性状进化的判别模型。
bioRxiv. 2025 Jun 13:2025.06.12.659377. doi: 10.1101/2025.06.12.659377.
4
Robust Phylogenetic Regression.稳健的系统发育回归。
Syst Biol. 2024 May 27;73(1):140-157. doi: 10.1093/sysbio/syad070.

本文引用的文献

3
STABILIZING SELECTION AND THE COMPARATIVE ANALYSIS OF ADAPTATION.稳定选择与适应性的比较分析
Evolution. 1997 Oct;51(5):1341-1351. doi: 10.1111/j.1558-5646.1997.tb01457.x.
5
AN EIGENVECTOR METHOD FOR ESTIMATING PHYLOGENETIC INERTIA.一种估计系统发育惯性的特征向量方法。
Evolution. 1998 Oct;52(5):1247-1262. doi: 10.1111/j.1558-5646.1998.tb02006.x.
6
9
The global diversity of birds in space and time.鸟类在时间和空间上的全球多样性。
Nature. 2012 Nov 15;491(7424):444-8. doi: 10.1038/nature11631. Epub 2012 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验