Suppr超能文献

波动驱动状态下小鼠V层锥体神经元的异质放电率反应。

Heterogeneous firing rate response of mouse layer V pyramidal neurons in the fluctuation-driven regime.

作者信息

Zerlaut Y, Teleńczuk B, Deleuze C, Bal T, Ouanounou G, Destexhe A

机构信息

Unité de Neurosciences, Information et Complexité, Centre National de la Recherche Scientifique, FRE 3693, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, France.

European Institute for Theoretical Neuroscience, 74 Rue du Faubourg Saint-Antoine, 75012, Paris, France.

出版信息

J Physiol. 2016 Jul 1;594(13):3791-808. doi: 10.1113/JP272317. Epub 2016 Jun 3.

Abstract

KEY POINTS

We recreated in vitro the fluctuation-driven regime observed at the soma during asynchronous network activity in vivo and we studied the firing rate response as a function of the properties of the membrane potential fluctuations. We provide a simple analytical template that captures the firing response of both pyramidal neurons and various theoretical models. We found a strong heterogeneity in the firing rate response of layer V pyramidal neurons: in particular, individual neurons differ not only in their mean excitability level, but also in their sensitivity to fluctuations. Theoretical modelling suggest that this observed heterogeneity might arise from various expression levels of the following biophysical properties: sodium inactivation, density of sodium channels and spike frequency adaptation.

ABSTRACT

Characterizing the input-output properties of neocortical neurons is of crucial importance for understanding the properties emerging at the network level. In the regime of low-rate irregular firing (such as in the awake state), determining those properties for neocortical cells remains, however, both experimentally and theoretically challenging. Here, we studied this problem using a combination of theoretical modelling and in vitro experiments. We first identified, theoretically, three somatic variables that describe the dynamical state at the soma in this fluctuation-driven regime: the mean, standard deviation and time constant of the membrane potential fluctuations. Next, we characterized the firing rate response of individual layer V pyramidal cells in this three-dimensional space by means of perforated-patch recordings and dynamic clamp in the visual cortex of juvenile mice in vitro. We found that individual neurons strongly differ not only in terms of their excitability, but also, and unexpectedly, in their sensitivities to fluctuations. Finally, using theoretical modelling, we attempted to reproduce these results. The model predicts that heterogeneous levels of biophysical properties such as sodium inactivation, sharpness of sodium activation and spike frequency adaptation account for the observed diversity of firing rate responses. Because the firing rate response will determine population rate dynamics during asynchronous neocortical activity, our results show that cortical populations are functionally strongly inhomogeneous in young mouse visual cortex, which should have important consequences on the strategies of cortical computation at early stages of sensory processing.

摘要

关键点

我们在体外重现了体内异步网络活动期间在胞体观察到的波动驱动状态,并研究了放电频率响应作为膜电位波动特性的函数。我们提供了一个简单的分析模板,该模板捕获了锥体神经元和各种理论模型的放电响应。我们发现V层锥体神经元的放电频率响应存在强烈的异质性:特别是,单个神经元不仅在其平均兴奋性水平上存在差异,而且在其对波动的敏感性上也存在差异。理论建模表明,观察到的这种异质性可能源于以下生物物理特性的不同表达水平:钠失活、钠通道密度和放电频率适应。

摘要

表征新皮层神经元的输入-输出特性对于理解在网络层面出现的特性至关重要。然而,在低频率不规则放电状态下(如在清醒状态),确定新皮层细胞的这些特性在实验和理论上仍然具有挑战性。在这里,我们结合理论建模和体外实验研究了这个问题。我们首先从理论上确定了三个体细胞变量,它们描述了在这种波动驱动状态下胞体的动态状态:膜电位波动的均值、标准差和时间常数。接下来,我们通过在幼年小鼠视觉皮层进行体外穿孔膜片钳记录和动态钳制,在这个三维空间中表征了单个V层锥体细胞的放电频率响应。我们发现,单个神经元不仅在兴奋性方面存在强烈差异,而且出乎意料的是,在其对波动的敏感性方面也存在差异。最后,我们使用理论建模试图重现这些结果。该模型预测,诸如钠失活、钠激活的尖锐程度和放电频率适应等生物物理特性的异质性水平解释了观察到的放电频率响应的多样性。由于放电频率响应将决定异步新皮层活动期间的群体频率动态,我们的结果表明,在幼鼠视觉皮层中,皮层群体在功能上具有很强的不均匀性,这应该会对感觉处理早期阶段的皮层计算策略产生重要影响。

相似文献

1
Heterogeneous firing rate response of mouse layer V pyramidal neurons in the fluctuation-driven regime.
J Physiol. 2016 Jul 1;594(13):3791-808. doi: 10.1113/JP272317. Epub 2016 Jun 3.
2
Heterogeneous firing responses predict diverse couplings to presynaptic activity in mice layer V pyramidal neurons.
PLoS Comput Biol. 2017 Apr 14;13(4):e1005452. doi: 10.1371/journal.pcbi.1005452. eCollection 2017 Apr.
3
Calcium coding and adaptive temporal computation in cortical pyramidal neurons.
J Neurophysiol. 1998 Mar;79(3):1549-66. doi: 10.1152/jn.1998.79.3.1549.
4
Single-Cell Membrane Potential Fluctuations Evince Network Scale-Freeness and Quasicriticality.
J Neurosci. 2019 Jun 12;39(24):4738-4759. doi: 10.1523/JNEUROSCI.3163-18.2019. Epub 2019 Apr 5.
5
Alterations in membrane and firing properties of layer 2/3 pyramidal neurons following focal laser lesions in rat visual cortex.
Neuroscience. 2013 Oct 10;250:208-21. doi: 10.1016/j.neuroscience.2013.06.063. Epub 2013 Jul 9.
6
Layer I neurons of rat neocortex. I. Action potential and repetitive firing properties.
J Neurophysiol. 1996 Aug;76(2):651-67. doi: 10.1152/jn.1996.76.2.651.
7
Dendritic Na+ current inactivation can increase cell excitability by delaying a somatic depolarizing afterpotential.
J Neurophysiol. 2005 Dec;94(6):3836-48. doi: 10.1152/jn.00653.2005. Epub 2005 Aug 24.
8
Physiology of layer 5 pyramidal neurons in mouse primary visual cortex: coincidence detection through bursting.
PLoS Comput Biol. 2015 Mar 13;11(3):e1004090. doi: 10.1371/journal.pcbi.1004090. eCollection 2015 Mar.
9
Enhanced Sensitivity to Rapid Input Fluctuations by Nonlinear Threshold Dynamics in Neocortical Pyramidal Neurons.
PLoS Comput Biol. 2016 Feb 23;12(2):e1004761. doi: 10.1371/journal.pcbi.1004761. eCollection 2016 Feb.

引用本文的文献

2
A multi-scale study of thalamic state-dependent responsiveness.
PLoS Comput Biol. 2024 Dec 13;20(12):e1012262. doi: 10.1371/journal.pcbi.1012262. eCollection 2024 Dec.
3
On the physiological and structural contributors to the overall balance of excitation and inhibition in local cortical networks.
J Comput Neurosci. 2024 Feb;52(1):73-107. doi: 10.1007/s10827-023-00863-x. Epub 2023 Oct 14.
4
A multi-layer mean-field model of the cerebellum embedding microstructure and population-specific dynamics.
PLoS Comput Biol. 2023 Sep 1;19(9):e1011434. doi: 10.1371/journal.pcbi.1011434. eCollection 2023 Sep.
5
A comprehensive neural simulation of slow-wave sleep and highly responsive wakefulness dynamics.
Front Comput Neurosci. 2023 Jan 13;16:1058957. doi: 10.3389/fncom.2022.1058957. eCollection 2022.
6
Noise Enhancement of Neural Information Processing.
Entropy (Basel). 2022 Dec 16;24(12):1837. doi: 10.3390/e24121837.
7
State-dependent activity dynamics of hypothalamic stress effector neurons.
Elife. 2022 Jun 30;11:e76832. doi: 10.7554/eLife.76832.
8
Optimal responsiveness and information flow in networks of heterogeneous neurons.
Sci Rep. 2021 Sep 2;11(1):17611. doi: 10.1038/s41598-021-96745-2.
9
Bridging Single Neuron Dynamics to Global Brain States.
Front Syst Neurosci. 2019 Dec 6;13:75. doi: 10.3389/fnsys.2019.00075. eCollection 2019.
10
A mean-field approach to the dynamics of networks of complex neurons, from nonlinear Integrate-and-Fire to Hodgkin-Huxley models.
J Neurophysiol. 2020 Mar 1;123(3):1042-1051. doi: 10.1152/jn.00399.2019. Epub 2019 Dec 18.

本文引用的文献

1
Origins of choice-related activity in mouse somatosensory cortex.
Nat Neurosci. 2016 Jan;19(1):127-34. doi: 10.1038/nn.4183. Epub 2015 Dec 7.
2
Dendritic integration: 60 years of progress.
Nat Neurosci. 2015 Dec;18(12):1713-21. doi: 10.1038/nn.4157. Epub 2015 Nov 25.
3
Diverse coupling of neurons to populations in sensory cortex.
Nature. 2015 May 28;521(7553):511-515. doi: 10.1038/nature14273. Epub 2015 Apr 6.
4
Excitability and responsiveness of rat barrel cortex neurons in the presence and absence of spontaneous synaptic activity in vivo.
J Physiol. 2014 Aug 15;592(16):3577-95. doi: 10.1113/jphysiol.2013.270561. Epub 2014 Apr 14.
5
Animation of natural scene by virtual eye-movements evokes high precision and low noise in V1 neurons.
Front Neural Circuits. 2013 Dec 27;7:206. doi: 10.3389/fncir.2013.00206. eCollection 2013.
6
Fast computations in cortical ensembles require rapid initiation of action potentials.
J Neurosci. 2013 Feb 6;33(6):2281-92. doi: 10.1523/JNEUROSCI.0771-12.2013.
7
Optimal heterogeneity for coding in spiking neural networks.
Phys Rev Lett. 2012 Jun 1;108(22):228102. doi: 10.1103/PhysRevLett.108.228102. Epub 2012 May 29.
8
Sensitivity of noisy neurons to coincident inputs.
J Neurosci. 2011 Nov 23;31(47):17193-206. doi: 10.1523/JNEUROSCI.2482-11.2011.
9
Impact of fast sodium channel inactivation on spike threshold dynamics and synaptic integration.
PLoS Comput Biol. 2011 May;7(5):e1001129. doi: 10.1371/journal.pcbi.1001129. Epub 2011 May 5.
10
Axon physiology.
Physiol Rev. 2011 Apr;91(2):555-602. doi: 10.1152/physrev.00048.2009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验