Gültekin Osman, Sommer Gerhard, Holzapfel Gerhard A
a Institute of Biomechanics , Graz University of Technology , Graz , Austria .
Comput Methods Biomech Biomed Engin. 2016 Nov;19(15):1647-64. doi: 10.1080/10255842.2016.1176155. Epub 2016 May 4.
This study deals with the viscoelastic constitutive modeling and the respective computational analysis of the human passive myocardium. We start by recapitulating the locally orthotropic inner structure of the human myocardial tissue and model the mechanical response through invariants and structure tensors associated with three orthonormal basis vectors. In accordance with recent experimental findings the ventricular myocardial tissue is assumed to be incompressible, thick-walled, orthotropic and viscoelastic. In particular, one spring element coupled with Maxwell elements in parallel endows the model with viscoelastic features such that four dashpots describe the viscous response due to matrix, fiber, sheet and fiber-sheet fragments. In order to alleviate the numerical obstacles, the strictly incompressible model is altered by decomposing the free-energy function into volumetric-isochoric elastic and isochoric-viscoelastic parts along with the multiplicative split of the deformation gradient which enables the three-field mixed finite element method. The crucial aspect of the viscoelastic formulation is linked to the rate equations of the viscous overstresses resulting from a 3-D analogy of a generalized 1-D Maxwell model. We provide algorithmic updates for second Piola-Kirchhoff stress and elasticity tensors. In the sequel, we address some numerical aspects of the constitutive model by applying it to elastic, cyclic and relaxation test data obtained from biaxial extension and triaxial shear tests whereby we assess the fitting capacity of the model. With the tissue parameters identified, we conduct (elastic and viscoelastic) finite element simulations for an ellipsoidal geometry retrieved from a human specimen.
本研究涉及人体被动心肌的粘弹性本构建模及相应的计算分析。我们首先概括人体心肌组织的局部正交各向异性内部结构,并通过与三个正交基向量相关的不变量和结构张量对力学响应进行建模。根据最近的实验结果,心室心肌组织被假定为不可压缩、厚壁、正交各向异性和粘弹性的。特别地,一个弹簧元件与多个麦克斯韦元件并联,赋予模型粘弹性特征,使得四个阻尼器描述由于基质、纤维、薄片和纤维 - 薄片碎片引起的粘性响应。为了减轻数值障碍,通过将自由能函数分解为体积 - 等容弹性和等容 - 粘弹性部分,以及变形梯度的乘法分解,改变了严格不可压缩模型,这使得能够采用三场混合有限元方法。粘弹性公式的关键方面与由广义一维麦克斯韦模型的三维类比产生的粘性过应力的速率方程相关。我们提供了第二皮奥拉 - 基尔霍夫应力和弹性张量的算法更新。接下来,我们通过将本构模型应用于从双轴拉伸和三轴剪切试验获得的弹性、循环和松弛试验数据,来处理本构模型的一些数值方面,从而评估模型的拟合能力。在确定了组织参数后,我们对从人体标本获取的椭圆形几何形状进行(弹性和粘弹性)有限元模拟。