Suppr超能文献

基于电场相互作用的人工耳蜗性能预后测试,通过电听觉脑干反应(eABR)进行评估。

A Cochlear Implant Performance Prognostic Test Based on Electrical Field Interactions Evaluated by eABR (Electrical Auditory Brainstem Responses).

作者信息

Guevara Nicolas, Hoen Michel, Truy Eric, Gallego Stéphane

机构信息

University Head and Neck Institute, CHU de Nice, 31 Avenue de Valombrose, 06107 Nice cedex 2, France.

Oticon Medical, Clinical and Scientific Research Department, 2720 chemin St Bernard, 06220 Vallauris, France.

出版信息

PLoS One. 2016 May 5;11(5):e0155008. doi: 10.1371/journal.pone.0155008. eCollection 2016.

Abstract

BACKGROUND

Cochlear implants (CIs) are neural prostheses that have been used routinely in the clinic over the past 25 years. They allow children who were born profoundly deaf, as well as adults affected by hearing loss for whom conventional hearing aids are insufficient, to attain a functional level of hearing. The "modern" CI (i.e., a multi-electrode implant using sequential coding strategies) has yielded good speech comprehension outcomes (recognition level for monosyllabic words about 50% to 60%, and sentence comprehension close to 90%). These good average results however hide a very important interindividual variability as scores in a given patients' population often vary from 5 to 95% in comparable testing conditions. Our aim was to develop a prognostic model for patients with unilateral CI. A novel method of objectively measuring electrical and neuronal interactions using electrical auditory brainstem responses (eABRs) is proposed.

METHODS AND FINDINGS

The method consists of two measurements: 1) eABR measurements with stimulation by a single electrode at 70% of the dynamic range (four electrodes distributed within the cochlea were tested), followed by a summation of these four eABRs; 2) Measurement of a single eABR with stimulation from all four electrodes at 70% of the dynamic range. A comparison of the eABRs obtained by these two measurements, defined as the monaural interaction component (MIC), indicated electrical and neural interactions between the stimulation channels. Speech recognition performance without lip reading was measured for each patient using a logatome test (64 "vowel-consonant-vowel"; VCV; by forced choice of 1 out of 16). eABRs were measured in 16 CI patients (CIs with 20 electrodes, Digisonic SP; Oticon Medical ®, Vallauris, France). Significant correlations were found between speech recognition performance and the ratio of the amplitude of the V wave of the eABRs obtained with the two measurements (Pearson's linear regression model, parametric correlation: r2 = 0.26, p<0.05).

CONCLUSIONS

This prognostic model allowed a substantial amount of the interindividual variance in speech recognition scores to be explained. The present study used measurements of electrical and neuronal interactions by eABR to assess patients' bio-electric capacity to use multiple information channels supplied by the implant. This type of prognostic information may be valuable in several ways. On the patient level, it allows customizing of individual treatments. ClinicalTrials.gov Identifier: NCT01805167.

摘要

背景

人工耳蜗(CI)是一种神经假体,在过去25年中已在临床上常规使用。它们使先天性重度耳聋的儿童以及常规助听器对其听力损失效果不佳的成年人能够达到功能性听力水平。“现代”人工耳蜗(即使用顺序编码策略的多电极植入物)已取得了良好的言语理解效果(单音节词识别率约为50%至60%,句子理解率接近90%)。然而,这些良好的平均结果掩盖了非常重要的个体间差异,因为在给定患者群体中,在可比测试条件下得分通常在5%至95%之间变化。我们的目的是为单侧人工耳蜗植入患者开发一种预后模型。本文提出了一种使用电听觉脑干反应(eABR)客观测量电和神经相互作用的新方法。

方法与结果

该方法包括两项测量:1)在动态范围的70%处用单个电极刺激进行eABR测量(测试了耳蜗内分布的四个电极),然后对这四个eABR进行求和;2)在动态范围的70%处用所有四个电极刺激测量单个eABR。将这两项测量获得的eABR进行比较,定义为单耳相互作用成分(MIC),表明了刺激通道之间的电和神经相互作用。使用对数词汇测试(64个“元音 - 辅音 - 元音”;VCV;通过从16个中强制选择1个)对每位患者进行不看唇读的言语识别性能测量。对16名人工耳蜗植入患者(配备20个电极的人工耳蜗,Digisonic SP;奥迪康医疗公司®,法国瓦洛里斯)进行了eABR测量。在言语识别性能与两次测量获得的eABR的V波幅度比值之间发现了显著相关性(Pearson线性回归模型,参数相关性:r2 = 0.26,p<0.05)。

结论

该预后模型能够解释言语识别分数中大量的个体间差异。本研究使用eABR测量电和神经相互作用,以评估患者利用植入物提供的多个信息通道的生物电能力。这种类型的预后信息可能在多个方面具有价值。在患者层面,它允许进行个性化治疗定制。ClinicalTrials.gov标识符:NCT01805167。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9403/4858145/1d82b4f4cb2b/pone.0155008.g001.jpg

相似文献

2
Prognostic value of electrically evoked auditory brainstem responses in cochlear implantation.
Cochlear Implants Int. 2015 Sep;16(5):254-61. doi: 10.1179/1754762815Y.0000000005. Epub 2015 Mar 23.
3
4
The pattern of auditory brainstem response wave V maturation in cochlear-implanted children.
Clin Neurophysiol. 2007 Mar;118(3):676-89. doi: 10.1016/j.clinph.2006.11.010. Epub 2007 Jan 16.
9
[Detection of the electric brain stem auditory response before cochlear implantation and its significance].
Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2016 Nov 7;51(11):826-831. doi: 10.3760/cma.j.issn.1673-0860.2016.11.005.

本文引用的文献

1
Temporal Considerations for Stimulating Spiral Ganglion Neurons with Cochlear Implants.
J Assoc Res Otolaryngol. 2016 Feb;17(1):1-17. doi: 10.1007/s10162-015-0545-5.
2
Perceptual interactions between electrodes using focused and monopolar cochlear stimulation.
J Assoc Res Otolaryngol. 2015 Jun;16(3):401-12. doi: 10.1007/s10162-015-0511-2. Epub 2015 Mar 6.
3
Peripheral and Central Contributions to Cortical Responses in Cochlear Implant Users.
Ear Hear. 2015 Jul-Aug;36(4):430-40. doi: 10.1097/AUD.0000000000000143.
6
Methods and applications of the audibility index in hearing aid selection and fitting.
Trends Amplif. 2002 Sep;6(3):81-129. doi: 10.1177/108471380200600302.
7
Clinical evaluation of an image-guided cochlear implant programming strategy.
Audiol Neurootol. 2014;19(6):400-11. doi: 10.1159/000365273. Epub 2014 Nov 7.
9
Binaural interaction in the auditory brainstem response: a normative study.
Clin Neurophysiol. 2015 Apr;126(4):772-9. doi: 10.1016/j.clinph.2014.07.032. Epub 2014 Aug 27.
10
Independent population coding of speech with sub-millisecond precision.
J Neurosci. 2013 Dec 4;33(49):19362-72. doi: 10.1523/JNEUROSCI.3711-13.2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验