Suppr超能文献

分子马达中的扭矩、化学性质与效率:F1 - ATP合酶旋转 - 化学偶联的研究

Torque, chemistry and efficiency in molecular motors: a study of the rotary-chemical coupling in F1-ATPase.

作者信息

Mukherjee Shayantani, Bora Ram Prasad, Warshel Arieh

机构信息

Department of Chemistry,University of Southern California,418 SGM Building,3620 McClintock Avenue,Los Angeles,CA 90089-1062,USA.

出版信息

Q Rev Biophys. 2015 Nov;48(4):395-403. doi: 10.1017/S0033583515000050.

Abstract

Detailed understanding of the action of biological molecular machines must overcome the challenge of gaining a clear knowledge of the corresponding free-energy landscape. An example for this is the elucidation of the nature of converting chemical energy to torque and work in the rotary molecular motor of F1-ATPase. A major part of the challenge involves understanding the rotary-chemical coupling from a non-phenomenological structure/energy description. Here we focused on using a coarse-grained model of F1-ATPase to generate a structure-based free-energy landscape of the rotary-chemical process of the whole system. In particular, we concentrated on exploring the possible impact of the position of the catalytic dwell on the efficiency and torque generation of the molecular machine. It was found that the experimentally observed torque can be reproduced with landscapes that have different positions for the catalytic dwell on the rotary-chemical surface. Thus, although the catalysis is undeniably required for torque generation, the experimentally observed position of the catalytic dwell at 80° might not have a clear advantage for the force generation by F1-ATPase. This further implies that the rotary-chemical couplings in these biological motors are quite robust and their efficiencies do not depend explicitly on the position of the catalytic dwells. Rather, the specific positioning of the dwells with respect to the rotational angle is a characteristic arising due to the structural construct of the molecular machine and might not bear any clear connection to the thermodynamic efficiency for the system.

摘要

对生物分子机器作用的详细理解必须克服在清晰了解相应自由能景观方面的挑战。一个例子是阐明F1 - ATPase旋转分子马达中化学能转化为扭矩和功的本质。这一挑战的主要部分涉及从非唯象的结构/能量描述来理解旋转 - 化学耦合。在此,我们专注于使用F1 - ATPase的粗粒度模型来生成整个系统旋转 - 化学过程基于结构的自由能景观。特别地,我们集中探讨催化驻留位置对分子机器效率和扭矩产生的可能影响。结果发现,对于旋转 - 化学表面上催化驻留有不同位置的景观,可以重现实验观察到的扭矩。因此,尽管扭矩产生无疑需要催化作用,但实验观察到的催化驻留在80°的位置对于F1 - ATPase产生力可能并没有明显优势。这进一步意味着这些生物马达中的旋转 - 化学耦合相当稳健,其效率并不明确依赖于催化驻留的位置。相反,驻留相对于旋转角度的特定定位是由于分子机器的结构构造而产生的一种特征,可能与系统的热力学效率没有任何明显关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4bd/4873004/4f322fbfbe73/nihms-785566-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验