Keil Lorenz, Hartmann Michael, Lanzmich Simon, Braun Dieter
Systems Biophysics, Physics Department, Nanosystems Initiative Munich and Center for NanoScience, Ludwig-Maximilians-Universität München, Amalienstraße 54, 80799 München, Germany.
Phys Chem Chem Phys. 2016 Jul 27;18(30):20153-9. doi: 10.1039/c6cp00577b.
How can living matter arise from dead matter? All known living systems are built around information stored in RNA and DNA. To protect this information against molecular degradation and diffusion, the second law of thermodynamics imposes the need for a non-equilibrium driving force. Following a series of successful experiments using thermal gradients, we have shown that heat gradients across sub-millimetre pores can drive accumulation, replication, and selection of ever longer molecules, implementing all the necessary parts for Darwinian evolution. For these lab experiments to proceed with ample speed, however, the temperature gradients have to be quite steep, reaching up to 30 K per 100 μm. Here we use computer simulations based on experimental data to show that 2000-fold shallower temperature gradients - down to 100 K over one metre - can still drive the accumulation of protobiomolecules. This finding opens the door for various environments to potentially host the origins of life: volcanic, water-vapour, or hydrothermal settings. Following the trajectories of single molecules in simulation, we also find that they are subjected to frequent temperature oscillations inside these pores, facilitating e.g. template-directed replication mechanisms. The tilting of the pore configuration is the central strategy to achieve replication in a shallow temperature gradient. Our results suggest that shallow thermal gradients across porous rocks could have facilitated the formation of evolutionary machines, significantly increasing the number of potential sites for the origin of life on young rocky planets.
生命物质如何从无生命物质中产生?所有已知的生命系统都是围绕存储在RNA和DNA中的信息构建的。为了保护这些信息不发生分子降解和扩散,热力学第二定律要求存在非平衡驱动力。在一系列使用热梯度的成功实验之后,我们已经表明,跨亚毫米孔隙的热梯度可以驱动更长分子的积累、复制和选择,实现达尔文进化所需的所有必要条件。然而,为了使这些实验室实验能够快速进行,温度梯度必须相当陡峭,每100μm可达30K。在这里,我们基于实验数据进行计算机模拟,结果表明,浅2000倍的温度梯度——在一米范围内降至100K——仍然可以驱动原始生物分子的积累。这一发现为各种环境潜在地孕育生命起源打开了大门:火山环境、水蒸气环境或热液环境。通过模拟单个分子的轨迹,我们还发现它们在这些孔隙内会频繁受到温度振荡的影响,这有助于例如模板导向的复制机制。孔隙构型的倾斜是在浅温度梯度下实现复制的核心策略。我们的结果表明,多孔岩石上的浅热梯度可能促进了进化机器的形成,显著增加了年轻岩石行星上生命起源的潜在地点数量。