Suppr超能文献

结构序列通过模板连接的复制从随机池中出现。

Structured sequences emerge from random pool when replicated by templated ligation.

机构信息

Systems Biophysics and Center for NanoScience, Ludwigs-Maximilian-Universität München, 80799 Munich, Germany.

Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973.

出版信息

Proc Natl Acad Sci U S A. 2021 Feb 23;118(8). doi: 10.1073/pnas.2018830118.

Abstract

The central question in the origin of life is to understand how structure can emerge from randomness. The Eigen theory of replication states, for sequences that are copied one base at a time, that the replication fidelity has to surpass an error threshold to avoid that replicated specific sequences become random because of the incorporated replication errors [M. Eigen, 58 (10), 465-523 (1971)]. Here, we showed that linking short oligomers from a random sequence pool in a templated ligation reaction reduced the sequence space of product strands. We started from 12-mer oligonucleotides with two bases in all possible combinations and triggered enzymatic ligation under temperature cycles. Surprisingly, we found the robust creation of long, highly structured sequences with low entropy. At the ligation site, complementary and alternating sequence patterns developed. However, between the ligation sites, we found either an A-rich or a T-rich sequence within a single oligonucleotide. Our modeling suggests that avoidance of hairpins was the likely cause for these two complementary sequence pools. What emerged was a network of complementary sequences that acted both as templates and substrates of the reaction. This self-selecting ligation reaction could be restarted by only a few majority sequences. The findings showed that replication by random templated ligation from a random sequence input will lead to a highly structured, long, and nonrandom sequence pool. This is a favorable starting point for a subsequent Darwinian evolution searching for higher catalytic functions in an RNA world scenario.

摘要

生命起源的核心问题是理解结构如何从随机性中涌现。复制的 Eigen 理论指出,对于一次复制一个碱基的序列,复制保真度必须超过误差阈值,以避免由于复制错误而导致复制的特定序列变得随机[M. Eigen,58(10),465-523(1971)]。在这里,我们表明,在模板连接反应中从随机序列池中连接短寡核苷酸会减少产物链的序列空间。我们从具有所有可能组合的两个碱基的 12 -mer 寡核苷酸开始,并在温度循环下触发酶促连接。令人惊讶的是,我们发现了具有低熵的长且高度结构化序列的稳健创建。在连接位点处,互补和交替的序列模式发展起来。然而,在连接位点之间,我们发现单个寡核苷酸内要么是 A 丰富的,要么是 T 丰富的序列。我们的模型表明,避免发夹结构可能是这两个互补序列库的原因。出现的是一个互补序列网络,它既作为反应的模板,也作为反应的底物。这种自选择的连接反应可以仅由少数多数序列重新启动。研究结果表明,从随机序列输入的随机模板连接进行复制将导致高度结构化、长且非随机的序列库。这是在 RNA 世界场景中寻找更高催化功能的后续达尔文进化的有利起点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93e1/7923349/7bdcb3f0204a/pnas.2018830118fig01.jpg

相似文献

1
Structured sequences emerge from random pool when replicated by templated ligation.
Proc Natl Acad Sci U S A. 2021 Feb 23;118(8). doi: 10.1073/pnas.2018830118.
2
Surprising fidelity of template-directed chemical ligation of oligonucleotides.
Chem Biol. 1997 Aug;4(8):595-605. doi: 10.1016/s1074-5521(97)90245-3.
3
The fidelity of template-directed oligonucleotide ligation and the inevitability of polymerase function.
Orig Life Evol Biosph. 1999 Aug;29(4):375-90. doi: 10.1023/a:1006544611320.
5
tRNA sequences can assemble into a replicator.
Elife. 2021 Mar 2;10:e63431. doi: 10.7554/eLife.63431.
6
A cross-chiral RNA polymerase ribozyme.
Nature. 2014 Nov 20;515(7527):440-2. doi: 10.1038/nature13900. Epub 2014 Oct 29.
7
Selection of self-priming molecular replicators.
Nucleic Acids Res. 2019 Mar 18;47(5):2169-2176. doi: 10.1093/nar/gkz044.
8
The dawn of the RNA World: toward functional complexity through ligation of random RNA oligomers.
RNA. 2009 May;15(5):743-9. doi: 10.1261/rna.1488609. Epub 2009 Mar 24.
9
Thermodynamic basis for the emergence of genomes during prebiotic evolution.
PLoS Comput Biol. 2012 May;8(5):e1002534. doi: 10.1371/journal.pcbi.1002534. Epub 2012 May 31.
10
Biocompatible artificial DNA linker that is read through by DNA polymerases and is functional in Escherichia coli.
Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11338-43. doi: 10.1073/pnas.1101519108. Epub 2011 Jun 27.

引用本文的文献

1
Suppression of errors in collectively coded information.
ArXiv. 2025 Aug 29:arXiv:2508.21806v1.
2
Amino acids catalyse RNA formation under ambient alkaline conditions.
Nat Commun. 2025 Jun 4;16(1):5193. doi: 10.1038/s41467-025-60359-3.
3
Selection of Early Life Codons by Ultraviolet Light.
ACS Cent Sci. 2025 Jan 8;11(1):147-156. doi: 10.1021/acscentsci.4c01623. eCollection 2025 Jan 22.
4
Selective Nonenzymatic Formation of Biologically Common RNA Hairpins.
Angew Chem Int Ed Engl. 2025 Jan 27;64(5):e202417370. doi: 10.1002/anie.202417370. Epub 2024 Nov 26.
5
Template-based copying in chemically fuelled dynamic combinatorial libraries.
Nat Chem. 2024 Aug;16(8):1240-1249. doi: 10.1038/s41557-024-01570-5. Epub 2024 Jul 16.
6
Emergence of catalytic function in prebiotic information-coding polymers.
Elife. 2024 Mar 26;12:RP91397. doi: 10.7554/eLife.91397.
7
Replication elongates short DNA, reduces sequence bias and develops trimer structure.
Nucleic Acids Res. 2024 Feb 9;52(3):1290-1297. doi: 10.1093/nar/gkad1190.
8
The protometabolic nature of prebiotic chemistry.
Chem Soc Rev. 2023 Oct 30;52(21):7359-7388. doi: 10.1039/d3cs00594a.
9
Origins of life: first came evolutionary dynamics.
QRB Discov. 2023 Mar 22;4:e4. doi: 10.1017/qrd.2023.2. eCollection 2023.
10
Sequencing the origins of life.
BBA Adv. 2022 Mar 5;2:100049. doi: 10.1016/j.bbadva.2022.100049. eCollection 2022.

本文引用的文献

1
Harnessing chemical energy for the activation and joining of prebiotic building blocks.
Nat Chem. 2020 Nov;12(11):1023-1028. doi: 10.1038/s41557-020-00564-3. Epub 2020 Oct 22.
2
Assembly of a Ribozyme Ligase from Short Oligomers by Nonenzymatic Ligation.
J Am Chem Soc. 2020 Sep 16;142(37):15961-15965. doi: 10.1021/jacs.0c06722. Epub 2020 Sep 1.
3
Heated gas bubbles enrich, crystallize, dry, phosphorylate and encapsulate prebiotic molecules.
Nat Chem. 2019 Sep;11(9):779-788. doi: 10.1038/s41557-019-0299-5. Epub 2019 Jul 29.
4
Continuous nonenzymatic cross-replication of DNA strands with activated DNA oligonucleotides.
Chem Sci. 2019 Apr 30;10(22):5807-5814. doi: 10.1039/c9sc00770a. eCollection 2019 Jun 14.
5
Onset of natural selection in populations of autocatalytic heteropolymers.
J Chem Phys. 2018 Oct 7;149(13):134901. doi: 10.1063/1.5048488.
6
The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update.
Nucleic Acids Res. 2018 Jul 2;46(W1):W537-W544. doi: 10.1093/nar/gky379.
7
Sequence selection by dynamical symmetry breaking in an autocatalytic binary polymer model.
Phys Rev E. 2017 Dec;96(6-1):062407. doi: 10.1103/PhysRevE.96.062407. Epub 2017 Dec 13.
8
Spontaneous fine-tuning to environment in many-species chemical reaction networks.
Proc Natl Acad Sci U S A. 2017 Jul 18;114(29):7565-7570. doi: 10.1073/pnas.1700617114. Epub 2017 Jul 3.
9
Common and Potentially Prebiotic Origin for Precursors of Nucleotide Synthesis and Activation.
J Am Chem Soc. 2017 Jul 5;139(26):8780-8783. doi: 10.1021/jacs.7b01562. Epub 2017 Jun 22.
10
Enhanced Nonenzymatic RNA Copying with 2-Aminoimidazole Activated Nucleotides.
J Am Chem Soc. 2017 Feb 8;139(5):1810-1813. doi: 10.1021/jacs.6b13148. Epub 2017 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验