Suppr超能文献

临床和结构神经影像数据预测的重度抑郁症自然病程:5年随访

NATURALISTIC COURSE OF MAJOR DEPRESSIVE DISORDER PREDICTED BY CLINICAL AND STRUCTURAL NEUROIMAGING DATA: A 5-YEAR FOLLOW-UP.

作者信息

Serra-Blasco Maria, de Diego-Adeliño Javier, Vives-Gilabert Yolanda, Trujols Joan, Puigdemont Dolors, Carceller-Sindreu Mar, Pérez Victor, Álvarez Enric, Portella Maria J

机构信息

Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona (UAB), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Catalonia, Spain.

INNDACYT, Barcelona, Spain.

出版信息

Depress Anxiety. 2016 Nov;33(11):1055-1064. doi: 10.1002/da.22522. Epub 2016 May 9.

Abstract

BACKGROUND

Despite its high recurrence rate, major depression disorder (MDD) still lacks neurobiological markers to optimize treatment selection. The aim of this study was to examine the prognostic potential of clinical and structural magnetic resonance imaging (sMRI) in the long-term MDD clinical outcomes (COs).

METHODS

Forty-nine MDD patients were grouped into one of four different CO categories according to their trajectory: recovery, partial remission, remission recurrence, and chronic depression. Regression models including baseline demographic, clinical, and sMRI data were used for predicting patients' COs and symptom severity 5 years later.

RESULTS

The model including only clinical data explained 32.4% of the variance in COs and 55% in HDRS, whereas the model combining clinical and sMRI data increased up to 52/68%, respectively. A bigger volume of right anterior cingulate gyrus was the variable that best predicted COs.

CONCLUSIONS

The findings suggest that the addition of sMRI brain data to clinical information in depressive patients can significantly improve the prediction of their COs. The dorsal part of the right anterior cingulate gyrus may act as a potential biomarker of long-term clinical trajectories.

摘要

背景

尽管重度抑郁症(MDD)复发率高,但仍缺乏神经生物学标志物来优化治疗选择。本研究旨在探讨临床和结构磁共振成像(sMRI)对MDD长期临床结局(COs)的预后潜力。

方法

49例MDD患者根据其病程分为四种不同的CO类别之一:康复、部分缓解、缓解复发和慢性抑郁。使用包括基线人口统计学、临床和sMRI数据的回归模型来预测患者5年后的COs和症状严重程度。

结果

仅包含临床数据的模型解释了COs中32.4%的方差和HDRS中55%的方差,而结合临床和sMRI数据的模型分别增加到52%/68%。右侧前扣带回体积较大是最能预测COs的变量。

结论

研究结果表明,将sMRI脑数据添加到抑郁症患者的临床信息中可显著改善对其COs的预测。右侧前扣带回的背侧部分可能是长期临床病程的潜在生物标志物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验