Suppr超能文献

对比增强光谱乳腺摄影的诊断性能:系统评价与荟萃分析。

Diagnostic performance of contrast-enhanced spectral mammography: Systematic review and meta-analysis.

作者信息

Tagliafico Alberto Stefano, Bignotti Bianca, Rossi Federica, Signori Alessio, Sormani Maria Pia, Valdora Francesca, Calabrese Massimo, Houssami Nehmat

机构信息

Institute of Anatomy, Department of Experimental Medicine, University of Genoa, Via L.B. Alberti, 16132 Genoa, Italy.

Radiology Department, Department of Health Sciences, University of Genoa, Via Pastore, 16132 Genoa, Italy.

出版信息

Breast. 2016 Aug;28:13-9. doi: 10.1016/j.breast.2016.04.008. Epub 2016 May 7.

Abstract

PURPOSE

To estimate sensitivity and specificity of CESM for breast cancer diagnosis.

METHODS

Systematic review and meta-analysis of the accuracy of CESM in finding breast cancer in highly selected women. We estimated summary receiver operating characteristic curves, sensitivity and specificity according to quality criteria with QUADAS-2.

RESULTS

Six hundred four studies were retrieved, 8 of these reporting on 920 patients with 994 lesions, were eligible for inclusion. Estimated sensitivity from all studies was: 0.98 (95% CI: 0.96-1.00). Specificity was estimated from six studies reporting raw data: 0.58 (95% CI: 0.38-0.77). The majority of studies were scored as at high risk of bias due to the very selected populations.

CONCLUSION

CESM has a high sensitivity but very low specificity. The source studies were based on highly selected case series and prone to selection bias. High-quality studies are required to assess the accuracy of CESM in unselected cases.

摘要

目的

评估乳腺X线合成孔径乳腺成像(CESM)用于乳腺癌诊断的敏感度和特异度。

方法

对高度筛选的女性中CESM发现乳腺癌的准确性进行系统评价和荟萃分析。我们根据QUADAS-2质量标准估计汇总的受试者工作特征曲线、敏感度和特异度。

结果

检索到604项研究,其中8项报告了920例患者的994个病灶,符合纳入标准。所有研究估计的敏感度为:0.98(95%置信区间:0.96 - 1.00)。特异度根据6项报告原始数据的研究估计为:0.58(95%置信区间:0.38 - 0.77)。由于研究人群高度筛选,大多数研究被评为存在高偏倚风险。

结论

CESM具有高敏感度但特异度极低。原始研究基于高度筛选的病例系列,易于出现选择偏倚。需要高质量研究来评估CESM在未筛选病例中的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验