Departments of Chemistry and Geological Sciences, Stanford University , Stanford, California 94305, United States.
Departments of Chemistry and Geological Sciences, Stanford University, Stanford, California 94305, United States; Departments of Chemistry and Geological Sciences, Stanford University, Stanford, California 94305, United States; Photon Science and Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.
ACS Cent Sci. 2016 Apr 27;2(4):201-9. doi: 10.1021/acscentsci.6b00055. Epub 2016 Apr 6.
We report the first high-pressure single-crystal structures of hybrid perovskites. The crystalline semiconductors (MA)PbX3 (MA = CH3NH3 (+), X = Br(-) or I(-)) afford us the rare opportunity of understanding how compression modulates their structures and thereby their optoelectronic properties. Using atomic coordinates obtained from high-pressure single-crystal X-ray diffraction we track the perovskites' precise structural evolution upon compression. These structural changes correlate well with pressure-dependent single-crystal photoluminescence (PL) spectra and high-pressure bandgaps derived from density functional theory. We further observe dramatic piezochromism where the solids become lighter in color and then transition to opaque black with compression. Indeed, electronic conductivity measurements of (MA)PbI3 obtained within a diamond-anvil cell show that the material's resistivity decreases by 3 orders of magnitude between 0 and 51 GPa. The activation energy for conduction at 51 GPa is only 13.2(3) meV, suggesting that the perovskite is approaching a metallic state. Furthermore, the pressure response of mixed-halide perovskites shows new luminescent states that emerge at elevated pressures. We recently reported that the perovskites (MA)Pb(Br x I1-x )3 (0.2 < x < 1) reversibly form light-induced trap states, which pin their PL to a low energy. This may explain the low voltages obtained from solar cells employing these absorbers. Our high-pressure PL data indicate that compression can mitigate this PL redshift and may afford higher steady-state voltages from these absorbers. These studies show that pressure can significantly alter the transport and thermodynamic properties of these technologically important semiconductors.
我们报告了首例混合钙钛矿的高压单晶结构。晶体半导体 (MA)PbX3(MA = CH3NH3(+),X = Br(-) 或 I(-))为我们提供了难得的机会,使我们能够了解压缩如何调节它们的结构,从而调节它们的光电性能。利用高压单晶 X 射线衍射获得的原子坐标,我们跟踪了钙钛矿在压缩过程中的精确结构演变。这些结构变化与压力相关的单晶光致发光 (PL) 光谱和密度泛函理论得出的高压带隙很好地相关。我们还观察到了明显的压致变色现象,即随着压力的增加,固体的颜色变浅,然后转变为不透明的黑色。事实上,在金刚石压腔中获得的 (MA)PbI3 的电子电导率测量表明,材料的电阻率在 0 到 51 GPa 之间下降了 3 个数量级。在 51 GPa 时,导电机理的激活能仅为 13.2(3)meV,这表明钙钛矿正在接近金属态。此外,混合卤化物钙钛矿的压力响应显示出在升高的压力下出现新的发光态。我们最近报道了钙钛矿 (MA)Pb(Br x I1-x )3(0.2 < x < 1)可逆地形成光致陷阱态,从而将其 PL 固定在低能量处。这可能解释了采用这些吸收剂的太阳能电池获得的低电压。我们的高压 PL 数据表明,压缩可以减轻这种 PL 红移,并可能为这些吸收剂提供更高的稳态电压。这些研究表明,压力可以显著改变这些在技术上重要的半导体的输运和热力学性质。