Suppr超能文献

CsPbBr量子点中压力诱导的电子态跃迁、荧光猝灭和带隙演化的超快动力学

Ultrafast Dynamics Across Pressure-Induced Electronic State Transitions, Fluorescence Quenching, and Bandgap Evolution in CsPbBr Quantum Dots.

作者信息

Chen Lin, Chu Ya, Qin Xiaxia, Gao Zhijian, Zhang Guozhao, Zhang Haiwa, Wang Qinglin, Li Qian, Guo Haizhong, Li Yinwei, Liu Cailong

机构信息

School of Physics Science & Information Technology, Liaocheng University, Liaocheng, 252059, P. R. China.

Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, P. R. China.

出版信息

Adv Sci (Weinh). 2024 Apr;11(14):e2308016. doi: 10.1002/advs.202308016. Epub 2024 Feb 2.

Abstract

This work investigates the impact of pressure on the structural, optical properties, and electronic structure of CsPbBr quantum dots (QDs) using steady-state photoluminescence, steady-state absorption, and femtosecond transient absorption spectroscopy, reaching a maximum pressure of 3.38 GPa. The experimental results indicate that CsPbBr QDs undergo electronic state (ES) transitions from ES-I to ES-II and ES-II to ES-III at 0.38 and 1.08 GPa, respectively. Intriguingly, a mixed state of ES-II and ES-III is observed within the pressure range of 1.08-1.68 GPa. The pressure-induced fluorescence quenching in ES-II is attributed to enhanced defect trapping and reduced radiative recombination. Above 1.68 GPa, fluorescence vanishes entirely, attributed to the complete phase transformation from ES-II to ES-III in which radiative recombination becomes non-existent. Notably, owing to stronger quantum confinement effects, CsPbBr QDs exhibit an impressive bandgap tuning range of 0.497 eV from 0 to 2.08 GPa, outperforming nanocrystals by 1.4 times and bulk counterparts by 11.3 times. Furthermore, this work analyzes various carrier dynamics processes in the pressure-induced bandgap evolution and electron state transitions, and systematically studies the microphysical mechanisms of optical properties in CsPbBr QDs under pressure, offering insights for optimizing optical properties and designing novel materials.

摘要

本工作利用稳态光致发光、稳态吸收和飞秒瞬态吸收光谱研究了压力对CsPbBr量子点(QDs)的结构、光学性质和电子结构的影响,达到的最大压力为3.38 GPa。实验结果表明,CsPbBr量子点分别在0.38 GPa和1.08 GPa时经历从电子态(ES)-I到ES-II以及从ES-II到ES-III的电子态转变。有趣的是,在1.08 - 1.68 GPa的压力范围内观察到ES-II和ES-III的混合态。ES-II中压力诱导的荧光猝灭归因于缺陷俘获增强和辐射复合减少。在1.68 GPa以上,荧光完全消失,这归因于从ES-II到ES-III的完全相变,其中辐射复合不再存在。值得注意的是,由于更强的量子限制效应,CsPbBr量子点在0至2.08 GPa范围内展现出令人印象深刻的0.497 eV的带隙调谐范围,比纳米晶体高出1.4倍,比块状材料高出11.3倍。此外,本工作分析了压力诱导带隙演化和电子态转变中的各种载流子动力学过程,并系统研究了压力下CsPbBr量子点光学性质的微观物理机制,为优化光学性质和设计新型材料提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5307/11005694/0ed32c08b168/ADVS-11-2308016-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验