Li Xiaotong, Fu Yongping, Pedesseau Laurent, Guo Peijun, Cuthriell Shelby, Hadar Ido, Even Jacky, Katan Claudine, Stoumpos Constantinos C, Schaller Richard D, Harel Elad, Kanatzidis Mercouri G
Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.
Univ Rennes, INSA Rennes, CNRS, Institut FOTON, UMR 6082, Rennes F-35000, France.
J Am Chem Soc. 2020 Jul 1;142(26):11486-11496. doi: 10.1021/jacs.0c03860. Epub 2020 Jun 19.
Organic-inorganic hybrid halide perovskites are promising semiconductors with tailorable optical and electronic properties. The choice of A-site cation to support a three-dimensional (3D) perovskite structure AMX (where M is a metal and X is a halide) is limited by the geometric Goldschmidt tolerance factor. However, this geometric constraint can be relaxed in two-dimensional (2D) perovskites, providing us an opportunity to understand how various A-site cations modulate the structural properties and thereby the optoelectronic properties. Here, we report the synthesis and structures of single-crystal (BA)(A)PbI where BA = butylammonium and A = methylammonium (MA), formamidinium (FA), dimethylammonium (DMA), or guanidinium (GA), with a series of A-site cations varying in size. Single-crystal X-ray diffraction reveals that the MA, FA, and GA structures crystallize in the same space group, while the DMA imposes the space group. We observe that as the A-site cation becomes larger, the Pb-I bond continuously elongates, expanding the volume of the perovskite cage, equivalent to exerting "negative pressure" on the perovskite structures. Optical studies and DFT calculations show that the Pb-I bond length elongation reduces the overlap of the Pb s- and I p-orbitals and increases the optical bandgap, while Pb-I-Pb tilting angles play a secondary role. Raman spectra show lattice softening with increasing size of the A-site cation. These structural changes with enlarged A cations result in significant decreases in photoluminescence intensity and lifetime, consistent with a more pronounced nonradiative decay. Transient absorption microscopy results suggest that the PL drop may derive from a higher concentration of traps or phonon-assisted nonradiative recombination. The results highlight that extending the range of Goldschmidt tolerance factors for 2D perovskites is achievable, enabling further tuning of the structure-property relationships in 2D perovskites.
有机-无机杂化卤化物钙钛矿是一类具有可定制光学和电子性质的有前景的半导体材料。用于支撑三维(3D)钙钛矿结构AMX(其中M为金属,X为卤化物)的A位阳离子的选择受到几何戈尔德施密特容忍因子的限制。然而,在二维(2D)钙钛矿中这种几何限制可以放宽,这为我们提供了一个机会来了解各种A位阳离子如何调节结构性质,进而调节光电性质。在此,我们报道了单晶(BA)(A)PbI₃的合成与结构,其中BA =丁基铵,A =甲基铵(MA)、甲脒(FA)、二甲铵(DMA)或胍(GA),一系列A位阳离子的尺寸各不相同。单晶X射线衍射表明,MA、FA和GA结构结晶于同一空间群,而DMA结构则属于另一种空间群。我们观察到,随着A位阳离子变大,Pb-I键不断伸长,钙钛矿笼的体积增大,这相当于对钙钛矿结构施加“负压”。光学研究和密度泛函理论(DFT)计算表明,Pb-I键长的伸长减少了Pb的s轨道和I的p轨道的重叠,并增大了光学带隙,而Pb-I-Pb倾斜角起次要作用。拉曼光谱表明,随着A位阳离子尺寸的增加,晶格软化。随着A阳离子增大而发生的这些结构变化导致光致发光强度和寿命显著降低,这与更明显的非辐射衰减一致。瞬态吸收显微镜结果表明,光致发光强度下降可能源于更高浓度的陷阱或声子辅助的非辐射复合。这些结果突出表明,扩展二维钙钛矿的戈尔德施密特容忍因子范围是可行的,这使得能够进一步调整二维钙钛矿中的结构-性质关系。