Suppr超能文献

超声在3D生物打印中的应用。

The Application of Ultrasound in 3D Bio-Printing.

作者信息

Zhou Yufeng

机构信息

Singapore Centre for 3D Printing (SC3DP), School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore.

出版信息

Molecules. 2016 May 5;21(5):590. doi: 10.3390/molecules21050590.

Abstract

Three-dimensional (3D) bioprinting is an emerging and promising technology in tissue engineering to construct tissues and organs for implantation. Alignment of self-assembly cell spheroids that are used as bioink could be very accurate after droplet ejection from bioprinter. Complex and heterogeneous tissue structures could be built using rapid additive manufacture technology and multiple cell lines. Effective vascularization in the engineered tissue samples is critical in any clinical application. In this review paper, the current technologies and processing steps (such as printing, preparation of bioink, cross-linking, tissue fusion and maturation) in 3D bio-printing are introduced, and their specifications are compared with each other. In addition, the application of ultrasound in this novel field is also introduced. Cells experience acoustic radiation force in ultrasound standing wave field (USWF) and then accumulate at the pressure node at low acoustic pressure. Formation of cell spheroids by this method is within minutes with uniform size and homogeneous cell distribution. Neovessel formation from USWF-induced endothelial cell spheroids is significant. Low-intensity ultrasound could enhance the proliferation and differentiation of stem cells. Its use is at low cost and compatible with current bioreactor. In summary, ultrasound application in 3D bio-printing may solve some challenges and enhance the outcomes.

摘要

三维(3D)生物打印是组织工程领域一项新兴且有前景的技术,用于构建可植入的组织和器官。用作生物墨水的自组装细胞球体在从生物打印机喷出液滴后,其排列可以非常精确。利用快速增材制造技术和多种细胞系能够构建复杂且异质的组织结构。在任何临床应用中,工程化组织样本中的有效血管化都至关重要。在这篇综述论文中,介绍了3D生物打印中的当前技术和处理步骤(如打印、生物墨水制备、交联、组织融合和成熟),并相互比较了它们的规格。此外,还介绍了超声在这一新兴领域的应用。细胞在超声驻波场(USWF)中受到声辐射力作用,然后在低声压下聚集在压力节点处。通过这种方法在数分钟内即可形成大小均匀、细胞分布同质的细胞球体。由USWF诱导的内皮细胞球体形成新血管的效果显著。低强度超声可增强干细胞的增殖和分化。其使用成本低且与当前生物反应器兼容。总之,超声在3D生物打印中的应用可能会解决一些挑战并提高效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a289/6274238/b170c1c014d4/molecules-21-00590-g001.jpg

相似文献

1
The Application of Ultrasound in 3D Bio-Printing.
Molecules. 2016 May 5;21(5):590. doi: 10.3390/molecules21050590.
2
Replacement of Rat Tracheas by Layered, Trachea-Like, Scaffold-Free Structures of Human Cells Using a Bio-3D Printing System.
Adv Healthc Mater. 2019 Apr;8(7):e1800983. doi: 10.1002/adhm.201800983. Epub 2019 Jan 11.
3
Biofabrication of spatially organised tissues by directing the growth of cellular spheroids within 3D printed polymeric microchambers.
Biomaterials. 2019 Mar;197:194-206. doi: 10.1016/j.biomaterials.2018.12.028. Epub 2019 Jan 8.
4
Strategies for 3D bioprinting of spheroids: A comprehensive review.
Biomaterials. 2022 Dec;291:121881. doi: 10.1016/j.biomaterials.2022.121881. Epub 2022 Oct 28.
5
Development of Liver Decellularized Extracellular Matrix Bioink for Three-Dimensional Cell Printing-Based Liver Tissue Engineering.
Biomacromolecules. 2017 Apr 10;18(4):1229-1237. doi: 10.1021/acs.biomac.6b01908. Epub 2017 Mar 21.
6
Novel Digital Light Processing Printing Strategy Using a Collagen-Based Bioink with Prospective Cross-Linker Procyanidins.
Biomacromolecules. 2022 Jan 10;23(1):240-252. doi: 10.1021/acs.biomac.1c01244. Epub 2021 Dec 21.
7
Bioprinting Using Organ Building Blocks: Spheroids, Organoids, and Assembloids.
Tissue Eng Part A. 2024 Jul;30(13-14):377-386. doi: 10.1089/ten.TEA.2023.0198. Epub 2024 Jan 25.
8
Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties.
Acta Biomater. 2019 Nov;99:121-132. doi: 10.1016/j.actbio.2019.09.007. Epub 2019 Sep 17.
9
3D Cell Printing of Functional Skeletal Muscle Constructs Using Skeletal Muscle-Derived Bioink.
Adv Healthc Mater. 2016 Oct;5(20):2636-2645. doi: 10.1002/adhm.201600483. Epub 2016 Aug 16.
10
High-throughput fabrication of vascularized spheroids for bioprinting.
Biofabrication. 2018 Jun 12;10(3):035009. doi: 10.1088/1758-5090/aac7e6.

引用本文的文献

2
A Review of Single-Cell Microrobots: Classification, Driving Methods and Applications.
Micromachines (Basel). 2023 Aug 31;14(9):1710. doi: 10.3390/mi14091710.
3
Bioprinting Technologies and Bioinks for Vascular Model Establishment.
Int J Mol Sci. 2023 Jan 3;24(1):891. doi: 10.3390/ijms24010891.
4
Bioprinting Scaffolds for Vascular Tissues and Tissue Vascularization.
Bioengineering (Basel). 2021 Nov 6;8(11):178. doi: 10.3390/bioengineering8110178.
6
3D Bioprinting: The Roller Coaster Ride to Commercialization.
Int J Bioprint. 2020 Jul 30;6(3):301. doi: 10.18063/ijb.v6i3.301. eCollection 2020.
9
[The application and prospects of three dimensional bioprinting in urinary system reconstruction].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2020 Apr 25;37(2):207-210. doi: 10.7507/1001-5515.201912016.
10
In Vivo Tracking of Tissue Engineered Constructs.
Micromachines (Basel). 2019 Jul 16;10(7):474. doi: 10.3390/mi10070474.

本文引用的文献

1
Inkjet printing as a deposition and patterning tool for polymers and inorganic particles.
Soft Matter. 2008 Mar 20;4(4):703-713. doi: 10.1039/b711984d.
2
Bio-ink properties and printability for extrusion printing living cells.
Biomater Sci. 2013 Jul 4;1(7):763-773. doi: 10.1039/c3bm00012e. Epub 2013 Apr 30.
3
Tissue engineering: The first decade and beyond.
J Cell Biochem. 1998;72 Suppl 30-31(S30-31):297-303. doi: 10.1002/(SICI)1097-4644(1998)72:30/31+<297::AID-JCB36>3.0.CO;2-6.
4
3D bioprinting of tissues and organs.
Nat Biotechnol. 2014 Aug;32(8):773-85. doi: 10.1038/nbt.2958.
6
Three-dimensional printing of Hela cells for cervical tumor model in vitro.
Biofabrication. 2014 Sep;6(3):035001. doi: 10.1088/1758-5082/6/3/035001. Epub 2014 Apr 11.
7
Influence of tumour micro-environment heterogeneity on therapeutic response.
Nature. 2013 Sep 19;501(7467):346-54. doi: 10.1038/nature12626.
8
25th anniversary article: Engineering hydrogels for biofabrication.
Adv Mater. 2013 Sep 25;25(36):5011-28. doi: 10.1002/adma.201302042. Epub 2013 Aug 23.
9
Engineering parameters in bioreactor's design: a critical aspect in tissue engineering.
Biomed Res Int. 2013;2013:762132. doi: 10.1155/2013/762132. Epub 2013 Aug 5.
10
Cellular behavior in micropatterned hydrogels by bioprinting system depended on the cell types and cellular interaction.
J Biosci Bioeng. 2013 Aug;116(2):224-30. doi: 10.1016/j.jbiosc.2013.02.011. Epub 2013 Apr 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验