Suppr超能文献

基于 MRI 的肿瘤生长模型的贝叶斯个性化。

MRI Based Bayesian Personalization of a Tumor Growth Model.

出版信息

IEEE Trans Med Imaging. 2016 Oct;35(10):2329-2339. doi: 10.1109/TMI.2016.2561098. Epub 2016 Apr 29.

Abstract

The mathematical modeling of brain tumor growth has been the topic of numerous research studies. Most of this work focuses on the reaction-diffusion model, which suggests that the diffusion coefficient and the proliferation rate can be related to clinically relevant information. However, estimating the parameters of the reaction-diffusion model is difficult because of the lack of identifiability of the parameters, the uncertainty in the tumor segmentations, and the model approximation, which cannot perfectly capture the complex dynamics of the tumor evolution. Our approach aims at analyzing the uncertainty in the patient specific parameters of a tumor growth model, by sampling from the posterior probability of the parameters knowing the magnetic resonance images of a given patient. The estimation of the posterior probability is based on: 1) a highly parallelized implementation of the reaction-diffusion equation using the Lattice Boltzmann Method (LBM), and 2) a high acceptance rate Monte Carlo technique called Gaussian Process Hamiltonian Monte Carlo (GPHMC). We compare this personalization approach with two commonly used methods based on the spherical asymptotic analysis of the reaction-diffusion model, and on a derivative-free optimization algorithm. We demonstrate the performance of the method on synthetic data, and on seven patients with a glioblastoma, the most aggressive primary brain tumor. This Bayesian personalization produces more informative results. In particular, it provides samples from the regions of interest and highlights the presence of several modes for some patients. In contrast, previous approaches based on optimization strategies fail to reveal the presence of different modes, and correlation between parameters.

摘要

脑肿瘤生长的数学建模一直是许多研究的主题。这项工作大多集中在反应扩散模型上,该模型表明扩散系数和增殖率可以与临床相关信息相关联。然而,由于参数的不可识别性、肿瘤分割的不确定性以及模型近似不能完美地捕捉肿瘤演变的复杂动力学,估计反应扩散模型的参数是困难的。我们的方法旨在通过从给定患者的磁共振图像中了解特定于患者的肿瘤生长模型参数的后验概率来分析患者特异性参数的不确定性。后验概率的估计基于:1)使用格子玻尔兹曼方法(LBM)对反应扩散方程进行高度并行化实现,以及 2)称为高斯过程哈密顿蒙特卡罗(GPHMC)的高接受率蒙特卡罗技术。我们将这种个性化方法与基于反应扩散模型的球形渐近分析的两种常用方法以及无导数优化算法进行了比较。我们在合成数据和七个胶质母细胞瘤患者上演示了该方法的性能,胶质母细胞瘤是最具侵袭性的原发性脑肿瘤。这种贝叶斯个性化方法产生了更具信息量的结果。特别是,它提供了感兴趣区域的样本,并突出了一些患者存在多个模式。相比之下,以前基于优化策略的方法未能揭示不同模式和参数之间的相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验