Suppr超能文献

高效概率模型个性化集成数据和参数不确定性:在心脏电生理学中的 eikonal-diffusion 模型中的应用。

Efficient probabilistic model personalization integrating uncertainty on data and parameters: Application to eikonal-diffusion models in cardiac electrophysiology.

机构信息

Microsoft Research Cambridge, UK.

出版信息

Prog Biophys Mol Biol. 2011 Oct;107(1):134-46. doi: 10.1016/j.pbiomolbio.2011.07.002. Epub 2011 Jul 7.

Abstract

Biophysical models are increasingly used for medical applications at the organ scale. However, model predictions are rarely associated with a confidence measure although there are important sources of uncertainty in computational physiology methods. For instance, the sparsity and noise of the clinical data used to adjust the model parameters (personalization), and the difficulty in modeling accurately soft tissue physiology. The recent theoretical progresses in stochastic models make their use computationally tractable, but there is still a challenge in estimating patient-specific parameters with such models. In this work we propose an efficient Bayesian inference method for model personalization using polynomial chaos and compressed sensing. This method makes Bayesian inference feasible in real 3D modeling problems. We demonstrate our method on cardiac electrophysiology. We first present validation results on synthetic data, then we apply the proposed method to clinical data. We demonstrate how this can help in quantifying the impact of the data characteristics on the personalization (and thus prediction) results. Described method can be beneficial for the clinical use of personalized models as it explicitly takes into account the uncertainties on the data and the model parameters while still enabling simulations that can be used to optimize treatment. Such uncertainty handling can be pivotal for the proper use of modeling as a clinical tool, because there is a crucial requirement to know the confidence one can have in personalized models.

摘要

生物物理模型越来越多地被用于器官尺度的医学应用。然而,尽管计算生理学方法存在重要的不确定性来源,但模型预测很少与置信度度量相关联。例如,用于调整模型参数(个性化)的临床数据的稀疏性和噪声,以及准确建模软组织生理学的困难。随机模型的最新理论进展使得它们在计算上具有可操作性,但在使用这些模型估计患者特异性参数方面仍然存在挑战。在这项工作中,我们提出了一种使用多项式混沌和压缩感知进行模型个性化的高效贝叶斯推断方法。该方法使得在实际的 3D 建模问题中进行贝叶斯推断成为可能。我们在心脏电生理学上展示了我们的方法。我们首先在合成数据上呈现验证结果,然后将提出的方法应用于临床数据。我们展示了这如何帮助量化数据特征对个性化(因此预测)结果的影响。所描述的方法对于个性化模型的临床应用可能是有益的,因为它明确考虑了数据和模型参数的不确定性,同时仍然能够进行可用于优化治疗的模拟。这种不确定性处理对于将建模作为临床工具的正确使用至关重要,因为需要知道在个性化模型中可以有多少信心。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验