Institute of Solid State Electronics, TU Wien , Floragasse 7, 1040 Wien, Austria.
Institute for Solid State Physics, Friedrich-Schiller-University Jena , Max-Wien-Platz 1, 07743 Jena, Germany.
Nano Lett. 2016 Jun 8;16(6):3507-13. doi: 10.1021/acs.nanolett.6b00315. Epub 2016 May 13.
In this letter, we demonstrate the formation of unique Ga/GaAs/Si nanowire heterostructures, which were successfully implemented in nanoscale light-emitting devices with visible room temperature electroluminescence. Based on our recent approach for the integration of InAs/Si heterostructures into Si nanowires by ion implantation and flash lamp annealing, we developed a routine that has proven to be suitable for the monolithic integration of GaAs nanocrystallite segments into the core of silicon nanowires. The formation of a Ga segment adjacent to longer GaAs nanocrystallites resulted in Schottky-diode-like I/V characteristics with distinct electroluminescence originating from the GaAs nanocrystallite for the nanowire device operated in the reverse breakdown regime. The observed electroluminescence was ascribed to radiative band-to-band recombinations resulting in distinct emission peaks and a low contribution due to intraband transition, which were also observed under forward bias. Simulations of the obtained nanowire heterostructure confirmed the proposed impact ionization process responsible for hot carrier luminescence. This approach may enable a new route for on-chip photonic devices used for light emission or detection purposes.
在这封信中,我们展示了独特的 Ga/GaAs/Si 纳米线异质结构的形成,这些结构已成功应用于具有可见室温电致发光的纳米级发光器件中。基于我们最近提出的通过离子注入和闪光灯退火将 InAs/Si 异质结构集成到硅纳米线中的方法,我们开发了一种常规方法,该方法已被证明适用于将 GaAs 纳米晶段单片集成到硅纳米线的核心中。在较长的 GaAs 纳米晶旁边形成 Ga 段导致肖特基二极管型 I/V 特性,并且由于纳米线器件在反向击穿状态下运行,因此源自 GaAs 纳米晶的电致发光具有明显的特征。观察到的电致发光归因于辐射带-带复合,从而导致明显的发射峰和由于能带内跃迁引起的低贡献,在正向偏压下也观察到了这种现象。对获得的纳米线异质结构的模拟证实了所提出的热载流子发光的碰撞电离过程。这种方法可能为用于发光或检测目的的片上光子器件开辟新途径。