Suppr超能文献

过氧化物酶体功能的差异重塑是双鞭毛虫和动质体环境及代谢适应性的基础。

Differential remodelling of peroxisome function underpins the environmental and metabolic adaptability of diplonemids and kinetoplastids.

作者信息

Morales Jorge, Hashimoto Muneaki, Williams Tom A, Hirawake-Mogi Hiroko, Makiuchi Takashi, Tsubouchi Akiko, Kaga Naoko, Taka Hikari, Fujimura Tsutomu, Koike Masato, Mita Toshihiro, Bringaud Frédéric, Concepción Juan L, Hashimoto Tetsuo, Embley T Martin, Nara Takeshi

机构信息

Department of Molecular and Cellular Parasitology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.

Institute for Cell and Molecular Biosciences, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK School of Earth Sciences, University of Bristol, Bristol BS8 1TG, UK.

出版信息

Proc Biol Sci. 2016 May 11;283(1830). doi: 10.1098/rspb.2016.0520.

Abstract

The remodelling of organelle function is increasingly appreciated as a central driver of eukaryotic biodiversity and evolution. Kinetoplastids including Trypanosoma and Leishmania have evolved specialized peroxisomes, called glycosomes. Glycosomes uniquely contain a glycolytic pathway as well as other enzymes, which underpin the physiological flexibility of these major human pathogens. The sister group of kinetoplastids are the diplonemids, which are among the most abundant eukaryotes in marine plankton. Here we demonstrate the compartmentalization of gluconeogenesis, or glycolysis in reverse, in the peroxisomes of the free-living marine diplonemid, Diplonema papillatum Our results suggest that peroxisome modification was already under way in the common ancestor of kinetoplastids and diplonemids, and raise the possibility that the central importance of gluconeogenesis to carbon metabolism in the heterotrophic free-living ancestor may have been an important selective driver. Our data indicate that peroxisome modification is not confined to the kinetoplastid lineage, but has also been a factor in the success of their free-living euglenozoan relatives.

摘要

细胞器功能的重塑日益被视为真核生物多样性和进化的核心驱动力。包括锥虫和利什曼原虫在内的动质体进化出了特殊的过氧化物酶体,称为糖体。糖体独特地包含一条糖酵解途径以及其他酶,这些酶支撑着这些主要人类病原体的生理灵活性。动质体的姐妹类群是双滴虫,它们是海洋浮游生物中最丰富的真核生物之一。在这里,我们展示了在自由生活的海洋双滴虫——乳头双滴虫的过氧化物酶体中,糖异生作用(即糖酵解的逆过程)的区室化。我们的结果表明,在动质体和双滴虫的共同祖先中,过氧化物酶体修饰就已经在进行中,这增加了一种可能性,即糖异生作用对异养自由生活祖先碳代谢的核心重要性可能是一个重要的选择驱动因素。我们的数据表明,过氧化物酶体修饰并不局限于动质体谱系,也是其自由生活的眼虫纲亲属成功的一个因素。

相似文献

2
Delineating transitions during the evolution of specialised peroxisomes: Glycosome formation in kinetoplastid and diplonemid protists.
Front Cell Dev Biol. 2022 Sep 12;10:979269. doi: 10.3389/fcell.2022.979269. eCollection 2022.
3
Compartmentalization of a glycolytic enzyme in Diplonema, a non-kinetoplastid euglenozoan.
Protist. 2011 Jul;162(3):482-9. doi: 10.1016/j.protis.2010.11.003. Epub 2011 Mar 5.
4
Highly flexible metabolism of the marine euglenozoan protist Diplonema papillatum.
BMC Biol. 2021 Nov 24;19(1):251. doi: 10.1186/s12915-021-01186-y.
7
A Revised Taxonomy of Diplonemids Including the Eupelagonemidae n. fam. and a Type Species, Eupelagonema oceanica n. gen. & sp.
J Eukaryot Microbiol. 2019 May;66(3):519-524. doi: 10.1111/jeu.12679. Epub 2018 Aug 29.
8
Structure, Properties, and Function of Glycosomes in .
Front Cell Infect Microbiol. 2020 Jan 31;10:25. doi: 10.3389/fcimb.2020.00025. eCollection 2020.
10
Biogenesis and metabolic homeostasis of trypanosomatid glycosomes: New insights and new questions.
J Eukaryot Microbiol. 2022 Nov;69(6):e12897. doi: 10.1111/jeu.12897. Epub 2022 Mar 8.

引用本文的文献

1
Energy metabolism in : the validated and putative bioenergetic and carbon sources.
mBio. 2025 Jun 11;16(6):e0221524. doi: 10.1128/mbio.02215-24. Epub 2025 May 20.
3
Delineating transitions during the evolution of specialised peroxisomes: Glycosome formation in kinetoplastid and diplonemid protists.
Front Cell Dev Biol. 2022 Sep 12;10:979269. doi: 10.3389/fcell.2022.979269. eCollection 2022.
4
Highly flexible metabolism of the marine euglenozoan protist Diplonema papillatum.
BMC Biol. 2021 Nov 24;19(1):251. doi: 10.1186/s12915-021-01186-y.
5
Nitric Oxide (NO) Scaffolds the Peroxisomal Protein-Protein Interaction Network in Higher Plants.
Int J Mol Sci. 2021 Feb 28;22(5):2444. doi: 10.3390/ijms22052444.
6
Phosphoglycerate kinase: structural aspects and functions, with special emphasis on the enzyme from Kinetoplastea.
Open Biol. 2020 Nov;10(11):200302. doi: 10.1098/rsob.200302. Epub 2020 Nov 25.
7
A Global Analysis of Enzyme Compartmentalization to Glycosomes.
Pathogens. 2020 Apr 12;9(4):281. doi: 10.3390/pathogens9040281.
8
Structure, Properties, and Function of Glycosomes in .
Front Cell Infect Microbiol. 2020 Jan 31;10:25. doi: 10.3389/fcimb.2020.00025. eCollection 2020.
9
A single-cell genome reveals diplonemid-like ancestry of kinetoplastid mitochondrial gene structure.
Philos Trans R Soc Lond B Biol Sci. 2019 Nov 25;374(1786):20190100. doi: 10.1098/rstb.2019.0100. Epub 2019 Oct 7.
10
Transcriptome, proteome and draft genome of Euglena gracilis.
BMC Biol. 2019 Feb 7;17(1):11. doi: 10.1186/s12915-019-0626-8.

本文引用的文献

1
Diplonemids.
Curr Biol. 2015 Aug 17;25(16):R702-4. doi: 10.1016/j.cub.2015.04.052.
2
Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean.
Science. 2015 May 22;348(6237):1261605. doi: 10.1126/science.1261605.
5
Pan genome of the phytoplankton Emiliania underpins its global distribution.
Nature. 2013 Jul 11;499(7457):209-13. doi: 10.1038/nature12221. Epub 2013 Jun 12.
6
Cryptic peroxisomal targeting via alternative splicing and stop codon read-through in fungi.
Nature. 2012 May 23;485(7399):522-5. doi: 10.1038/nature11051.
7
When, how and why glycolysis became compartmentalised in the Kinetoplastea. A new look at an ancient organelle.
Int J Parasitol. 2012 Jan;42(1):1-20. doi: 10.1016/j.ijpara.2011.10.007. Epub 2011 Nov 22.
8
Pyruvate kinase triggers a metabolic feedback loop that controls redox metabolism in respiring cells.
Cell Metab. 2011 Sep 7;14(3):415-27. doi: 10.1016/j.cmet.2011.06.017.
9
Compartmentalization of a glycolytic enzyme in Diplonema, a non-kinetoplastid euglenozoan.
Protist. 2011 Jul;162(3):482-9. doi: 10.1016/j.protis.2010.11.003. Epub 2011 Mar 5.
10
Evolutionary origins of metabolic compartmentalization in eukaryotes.
Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):847-55. doi: 10.1098/rstb.2009.0252.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验