Chen Mengbin, Chou Wayne K W, Al-Lami Naeemah, Faraldos Juan A, Allemann Rudolf K, Cane David E, Christianson David W
Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States.
Department of Chemistry, Brown University , Box H, Providence, Rhode Island 02912-9108, United States.
Biochemistry. 2016 May 24;55(20):2864-74. doi: 10.1021/acs.biochem.6b00343. Epub 2016 May 12.
Aristolochene synthase (ATAS) is a high-fidelity terpenoid cyclase that converts farnesyl diphosphate exclusively into the bicyclic hydrocarbon aristolochene. Previously determined crystal structures of ATAS complexes revealed trapped active site water molecules that could potentially interact with catalytic intermediates: water "w" hydrogen bonds with S303 and N299, water molecules "w1" and "w2" hydrogen bond with Q151, and a fourth water molecule coordinates to the Mg(2+)C ion. There is no obvious role for water in the ATAS mechanism because the enzyme exclusively generates a hydrocarbon product. Thus, these water molecules are tightly controlled so that they cannot react with carbocation intermediates. Steady-state kinetics and product distribution analyses of eight ATAS mutants designed to perturb interactions with active site water molecules (S303A, S303H, S303D, N299A, N299L, N299A/S303A, Q151H, and Q151E) indicate relatively modest effects on catalysis but significant effects on sesquiterpene product distributions. X-ray crystal structures of S303A, N299A, N299A/S303A, and Q151H mutants reveal minimal perturbation of active site solvent structure. Seven of the eight mutants generate farnesol and nerolidol, possibly resulting from addition of the Mg(2+)C-bound water molecule to the initially formed farnesyl cation, but no products are generated that would suggest enhanced reactivity of other active site water molecules. However, intermediate germacrene A tends to accumulate in these mutants. Thus, apart from the possible reactivity of Mg(2+)C-bound water, active site water molecules in ATAS are not directly involved in the chemistry of catalysis but instead contribute to the template that governs the conformation of the flexible substrate and carbocation intermediates.
马兜铃烯合酶(ATAS)是一种高保真萜类环化酶,它仅将法尼基二磷酸转化为双环烃马兜铃烯。先前确定的ATAS复合物晶体结构揭示了被困在活性位点的水分子,这些水分子可能与催化中间体相互作用:水“w”与S303和N299形成氢键,水分子“w1”和“w2”与Q151形成氢键,第四个水分子与Mg(2+)C离子配位。在ATAS机制中,水没有明显作用,因为该酶仅生成烃类产物。因此,这些水分子受到严格控制,使其不能与碳正离子中间体反应。对八个旨在扰乱与活性位点水分子相互作用的ATAS突变体(S303A、S303H、S303D、N299A、N299L、N299A/S303A、Q151H和Q151E)进行的稳态动力学和产物分布分析表明,对催化的影响相对较小,但对倍半萜产物分布有显著影响。S303A、N299A、N299A/S303A和Ql51H突变体的X射线晶体结构显示活性位点溶剂结构的扰动最小。八个突变体中的七个产生了法呢醇和橙花叔醇,这可能是由于与Mg(2+)C结合的水分子加到最初形成的法尼基阳离子上所致,但没有产生表明其他活性位点水分子反应性增强的产物。然而,中间体吉马烯A往往会在这些突变体中积累。因此,除了与Mg(2+)C结合水的可能反应性外,ATAS中的活性位点水分子并不直接参与催化化学反应,而是有助于控制柔性底物和碳正离子中间体构象的模板形成。