Grodzinsky Alan J, Wang Yang, Kakar Sanjeev, Vrahas Mark S, Evans Christopher H
Departments of Biological, Electrical and Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
J Orthop Res. 2017 Mar;35(3):406-411. doi: 10.1002/jor.23295. Epub 2017 Mar 2.
Injury to the joint provokes a number of local pathophysiological changes, including synthesis of inflammatory cytokines, death of chondrocytes, breakdown of the extra-cellular matrix of cartilage, and reduced synthesis of matrix macromolecules. These processes combine to engender the subsequent development of post-traumatic osteoarthritis (PTOA). To prevent this from happening, it is necessary to inhibit these disparate responses to injury; given their heterogeneity, this is challenging. However, dexamethasone has the necessary pleiotropic properties required of a drug for this purpose. Using in vitro models, we have shown that low doses of dexamethasone sustain the synthesis of cartilage proteoglycans while inhibiting their breakdown after injurious compression in the presence or absence of inflammatory cytokines. Under these conditions, dexamethasone is non-toxic and maintains the viability of chondrocytes exposed chronically to such cytokines as interleukin (IL) -1, IL-6, and tumor necrosis factor-α. Moreover, the anti-inflammatory properties of dexamethasone have been appreciated for decades. In view of this information, we have initiated a pilot clinical study to determine whether a single, intra-articular injection of dexamethasone into the wrist shows promise in preventing PTOA after intra-articular fracture of the distal radius.
Suppressing the various etiopathophysiological responses to injury in the joint is an attractive strategy for lowering the clinical burden of PTOA. The intra-articular administration of dexamethasone soon after injury offers a simple and inexpensive means of accomplishing this. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:406-411, 2017.
关节损伤会引发一系列局部病理生理变化,包括炎性细胞因子的合成、软骨细胞死亡、软骨细胞外基质的破坏以及基质大分子合成减少。这些过程共同导致创伤后骨关节炎(PTOA)的后续发展。为防止这种情况发生,有必要抑制对损伤的这些不同反应;鉴于它们的异质性,这具有挑战性。然而,地塞米松具有作为用于此目的药物所需的必要多效性特性。使用体外模型,我们已经表明,在存在或不存在炎性细胞因子的情况下,低剂量地塞米松在抑制损伤性压缩后软骨蛋白聚糖分解的同时维持其合成。在这些条件下,地塞米松无毒,并维持长期暴露于白细胞介素(IL)-1、IL-6和肿瘤坏死因子-α等细胞因子的软骨细胞的活力。此外,地塞米松的抗炎特性已为人所知数十年。鉴于此信息,我们已启动一项试点临床研究,以确定向腕关节单次关节内注射地塞米松在预防桡骨远端关节内骨折后PTOA方面是否有前景。
抑制关节对损伤的各种病因病理生理反应是减轻PTOA临床负担的有吸引力的策略。损伤后不久关节内给予地塞米松提供了一种简单且廉价的实现此目的的方法。©2017骨科研究协会。由Wiley Periodicals, Inc.出版。《矫形外科学研究》35:406 - 411, 2017。