Suppr超能文献

多光子显微镜设计实用指南。

A pragmatic guide to multiphoton microscope design.

作者信息

Young Michael D, Field Jeffrey J, Sheetz Kraig E, Bartels Randy A, Squier Jeff

机构信息

Center for Microintegrated Optics for Advanced Biological Control, Department of Physics, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, USA.

W. M. Keck Laboratory for Raman Imaging of Cell-to-Cell Communications, Colorado State University, Fort Collins, Colorado 80523, USA; Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado 80523, USA.

出版信息

Adv Opt Photonics. 2015 Jun 30;7(2):276-378. doi: 10.1364/AOP.7.000276.

Abstract

Multiphoton microscopy has emerged as a ubiquitous tool for studying microscopic structure and function across a broad range of disciplines. As such, the intent of this paper is to present a comprehensive resource for the construction and performance evaluation of a multiphoton microscope that will be understandable to the broad range of scientific fields that presently exploit, or wish to begin exploiting, this powerful technology. With this in mind, we have developed a guide to aid in the design of a multiphoton microscope. We discuss source selection, optical management of dispersion, image-relay systems with scan optics, objective-lens selection, single-element light-collection theory, photon-counting detection, image rendering, and finally, an illustrated guide for building an example microscope.

摘要

多光子显微镜已成为广泛学科中用于研究微观结构和功能的普遍工具。因此,本文旨在为多光子显微镜的构建和性能评估提供全面的资源,以便目前正在使用或希望开始使用这项强大技术的广大科学领域能够理解。考虑到这一点,我们编写了一本指南来辅助多光子显微镜的设计。我们讨论了光源选择、色散的光学管理、带有扫描光学器件的图像中继系统、物镜选择、单元素光收集理论、光子计数检测、图像渲染,最后还提供了一个构建示例显微镜的图文指南。

相似文献

1
A pragmatic guide to multiphoton microscope design.
Adv Opt Photonics. 2015 Jun 30;7(2):276-378. doi: 10.1364/AOP.7.000276.
2
Single-photon counting multicolor multiphoton fluorescence microscope.
J Fluoresc. 2005 Jan;15(1):41-51. doi: 10.1007/s10895-005-0212-z.
3
Self-referenced axial chromatic dispersion measurement in multiphoton microscopy through 2-color third-harmonic generation imaging.
J Biophotonics. 2018 Sep;11(9):e201800071. doi: 10.1002/jbio.201800071. Epub 2018 Jun 8.
4
Simultaneous multifocal, multiphoton, photon counting microscopy.
Opt Express. 2008 Jul 7;16(14):10364-71. doi: 10.1364/oe.16.010364.
5
Rapid mesoscale multiphoton microscopy of human skin.
Biomed Opt Express. 2016 Oct 3;7(11):4375-4387. doi: 10.1364/BOE.7.004375. eCollection 2016 Nov 1.
7
Design of a 3D printed smartphone microscopic system with enhanced imaging ability for biomedical applications.
J Microsc. 2019 Oct;276(1):13-20. doi: 10.1111/jmi.12829. Epub 2019 Sep 22.
8
Resonant-scanning dual-color STED microscopy with ultrafast photon counting: A concise guide.
Methods. 2015 Oct 15;88:48-56. doi: 10.1016/j.ymeth.2015.06.019. Epub 2015 Jun 27.
9
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
10
Principles of multiphoton microscopy.
Nephron Exp Nephrol. 2006;103(2):e33-40. doi: 10.1159/000090614. Epub 2006 Mar 10.

引用本文的文献

1
2
TWINKLE: An open-source two-photon microscope for teaching and research.
PLoS One. 2025 Feb 13;20(2):e0318924. doi: 10.1371/journal.pone.0318924. eCollection 2025.
3
TWINKLE: An open-source two-photon microscope for teaching and research.
bioRxiv. 2025 Jan 12:2024.09.23.612766. doi: 10.1101/2024.09.23.612766.
4
Standardised Measurements for Monitoring and Comparing Multiphoton Microscope Systems.
bioRxiv. 2024 Jan 23:2024.01.23.576417. doi: 10.1101/2024.01.23.576417.
5
Cascaded domain multiphoton spatial frequency modulation imaging.
J Biomed Opt. 2023 Oct;28(10):106502. doi: 10.1117/1.JBO.28.10.106502. Epub 2023 Oct 4.
6
MEMS Enabled Miniature Two-Photon Microscopy for Biomedical Imaging.
Micromachines (Basel). 2023 Feb 17;14(2):470. doi: 10.3390/mi14020470.
7
Computational framework for single-cell spatiotemporal dynamics of optogenetic membrane recruitment.
Cell Rep Methods. 2022 Jul 6;2(7):100245. doi: 10.1016/j.crmeth.2022.100245. eCollection 2022 Jul 18.
9
Two-dimensional random access multiphoton spatial frequency modulated imaging.
Opt Express. 2020 Jan 6;28(1):405-424. doi: 10.1364/OE.378460.
10
Fluorescence anisotropy imaging in drug discovery.
Adv Drug Deliv Rev. 2019 Nov-Dec;151-152:262-288. doi: 10.1016/j.addr.2018.01.019. Epub 2018 Feb 2.

本文引用的文献

1
Differential Multiphoton Laser Scanning Microscopy.
IEEE J Sel Top Quantum Electron. 2012 Jan-Feb;18(1):14-28. doi: 10.1109/JSTQE.2010.2077622. Epub 2010 Oct 28.
2
3
Multimodal nonlinear optical microscopy with shaped 10 fs pulses.
Opt Express. 2014 Nov 17;22(23):28790-7. doi: 10.1364/OE.22.028790.
4
A high performance, cost-effective, open-source microscope for scanning two-photon microscopy that is modular and readily adaptable.
PLoS One. 2014 Oct 21;9(10):e110475. doi: 10.1371/journal.pone.0110475. eCollection 2014.
5
Stimulated Raman Scattering Microscopy with a Robust Fibre Laser Source.
Nat Photonics. 2014 Feb 1;8(2):153-159. doi: 10.1038/nphoton.2013.360.
6
Sub-10-fs pulses tunable from 480 to 980 nm from a NOPA pumped by an Yb:KGW source.
Opt Lett. 2014 Jul 15;39(14):4112-5. doi: 10.1364/OL.39.004112.
7
Fast nonparaxial scalar focal field calculations.
J Opt Soc Am A Opt Image Sci Vis. 2014 Jun 1;31(6):1206-14. doi: 10.1364/JOSAA.31.001206.
8
Light sheet microscopy.
Methods Cell Biol. 2014;123:193-215. doi: 10.1016/B978-0-12-420138-5.00011-2.
9
Remote-focusing microscopy with long working distance objective lenses.
Appl Opt. 2014 Jun 1;53(16):3473-8. doi: 10.1364/AO.53.003473.
10
Optimal lens design and use in laser-scanning microscopy.
Biomed Opt Express. 2014 Apr 18;5(5):1588-609. doi: 10.1364/BOE.5.001588. eCollection 2014 May 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验