Suppr超能文献

针对10种人类疾病进行全基因组范围内SNP-SNP相互作用的详尽搜索。

Exhaustive Genome-Wide Search for SNP-SNP Interactions Across 10 Human Diseases.

作者信息

Murk William, DeWan Andrew T

机构信息

Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, Connecticut 06510.

Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, Connecticut 06510

出版信息

G3 (Bethesda). 2016 Jul 7;6(7):2043-50. doi: 10.1534/g3.116.028563.

Abstract

The identification of statistical SNP-SNP interactions may help explain the genetic etiology of many human diseases, but exhaustive genome-wide searches for these interactions have been difficult, due to a lack of power in most datasets. We aimed to use data from the Resource for Genetic Epidemiology Research on Adult Health and Aging (GERA) study to search for SNP-SNP interactions associated with 10 common diseases. FastEpistasis and BOOST were used to evaluate all pairwise interactions among approximately N = 300,000 single nucleotide polymorphisms (SNPs) with minor allele frequency (MAF) ≥ 0.15, for the dichotomous outcomes of allergic rhinitis, asthma, cardiac disease, depression, dermatophytosis, type 2 diabetes, dyslipidemia, hemorrhoids, hypertensive disease, and osteoarthritis. A total of N = 45,171 subjects were included after quality control steps were applied. These data were divided into discovery and replication subsets; the discovery subset had > 80% power, under selected models, to detect genome-wide significant interactions (P < 10(-12)). Interactions were also evaluated for enrichment in particular SNP features, including functionality, prior disease relevancy, and marginal effects. No interaction in any disease was significant in both the discovery and replication subsets. Enrichment analysis suggested that, for some outcomes, interactions involving SNPs with marginal effects were more likely to be nominally replicated, compared to interactions without marginal effects. If SNP-SNP interactions play a role in the etiology of the studied conditions, they likely have weak effect sizes, involve lower-frequency variants, and/or involve complex models of interaction that are not captured well by the methods that were utilized.

摘要

统计性单核苷酸多态性(SNP)-SNP相互作用的识别可能有助于解释许多人类疾病的遗传病因,但由于大多数数据集缺乏检验效能,对这些相互作用进行全基因组范围的详尽搜索一直很困难。我们旨在利用成人健康与衰老遗传流行病学研究资源(GERA)的数据,搜索与10种常见疾病相关的SNP-SNP相互作用。使用FastEpistasis和BOOST软件,针对变应性鼻炎、哮喘、心脏病、抑郁症、皮肤癣菌病、2型糖尿病、血脂异常、痔疮、高血压病和骨关节炎的二分结局,评估了次要等位基因频率(MAF)≥0.15的约N = 300,000个单核苷酸多态性(SNP)之间的所有成对相互作用。在应用质量控制步骤后,共纳入了N = 45,171名受试者。这些数据被分为发现集和验证集;在选定模型下,发现集有超过80%的检验效能来检测全基因组显著的相互作用(P < 10^(-12))。还评估了相互作用在特定SNP特征(包括功能、既往疾病相关性和边际效应)方面的富集情况。在发现集和验证集中,任何疾病的相互作用均无显著意义。富集分析表明,对于某些结局,与无边际效应的相互作用相比,涉及有边际效应SNP的相互作用更有可能被名义上验证。如果SNP-SNP相互作用在所研究疾病的病因中起作用,它们可能效应大小较弱,涉及低频变异,和/或涉及所使用方法未能很好捕捉的复杂相互作用模型。

相似文献

引用本文的文献

2
Genome-wide interaction analysis of pathological hallmarks in Alzheimer's disease.阿尔茨海默病病理特征的全基因组互作分析。
Neurobiol Aging. 2020 Sep;93:61-68. doi: 10.1016/j.neurobiolaging.2020.04.025. Epub 2020 Apr 29.

本文引用的文献

6
Detecting epistasis in human complex traits.检测人类复杂性状中的上位性。
Nat Rev Genet. 2014 Nov;15(11):722-33. doi: 10.1038/nrg3747. Epub 2014 Sep 9.
7
KCNK3: new gene target for pulmonary hypertension?KCNK3:肺动脉高压的新基因靶点?
Expert Rev Respir Med. 2014 Aug;8(4):385-7. doi: 10.1586/17476348.2014.909731. Epub 2014 Apr 18.
9
An evolutionary perspective on epistasis and the missing heritability.从进化角度看上位性和遗传缺失。
PLoS Genet. 2013 Feb;9(2):e1003295. doi: 10.1371/journal.pgen.1003295. Epub 2013 Feb 28.
10
Epistasis dominates the genetic architecture of Drosophila quantitative traits.上位性主导果蝇数量性状的遗传结构。
Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):15553-9. doi: 10.1073/pnas.1213423109. Epub 2012 Sep 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验