Suppr超能文献

解析骨肉瘤病理生物学中的信号网络

Deciphering signaling networks in osteosarcoma pathobiology.

作者信息

Adamopoulos Christos, Gargalionis Antonios N, Basdra Efthimia K, Papavassiliou Athanasios G

机构信息

Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece.

Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece

出版信息

Exp Biol Med (Maywood). 2016 Jun;241(12):1296-305. doi: 10.1177/1535370216648806. Epub 2016 May 6.

Abstract

Osteosarcoma is the most frequent type of primary bone tumors among children and adolescents. During the past years, little progress has been made regarding prognosis of osteosarcoma patients, especially for those with metastatic disease. Genomic instability and gene alterations are common, but current data do not reveal a consistent and repeatable pattern of osteosarcoma development, thus paralleling the tumor's high heterogeneity. Critical signal transduction pathways have been implicated in osteosarcoma pathobiology and are being evaluated as therapeutic targets, including receptor activator for nuclear factor-κB (RANK), Wnt, Notch, phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin, and mechanotransduction pathways. Herein, we recapitulate and discuss recent advances in the context of molecular mechanisms and signaling networks that contribute to osteosarcoma progression and metastasis, towards patient-tailored and novel-targeted treatments.

摘要

骨肉瘤是儿童和青少年中最常见的原发性骨肿瘤类型。在过去几年中,骨肉瘤患者的预后几乎没有进展,尤其是那些患有转移性疾病的患者。基因组不稳定和基因改变很常见,但目前的数据并未揭示骨肉瘤发展的一致且可重复的模式,因此与肿瘤的高度异质性相似。关键信号转导通路已被认为与骨肉瘤病理生物学有关,并正在作为治疗靶点进行评估,包括核因子κB受体激活剂(RANK)、Wnt、Notch、磷脂酰肌醇3激酶/蛋白激酶B/雷帕霉素靶蛋白以及机械转导通路。在此,我们概述并讨论了在分子机制和信号网络背景下的最新进展,这些进展有助于骨肉瘤的进展和转移,以实现针对患者的新型靶向治疗。

相似文献

1
Deciphering signaling networks in osteosarcoma pathobiology.
Exp Biol Med (Maywood). 2016 Jun;241(12):1296-305. doi: 10.1177/1535370216648806. Epub 2016 May 6.
2
Molecular Mechanisms and microRNAs in Osteosarcoma Pathogenesis.
Biochemistry (Mosc). 2016 Apr;81(4):315-28. doi: 10.1134/S0006297916040027.
4
Inactive Wnt/beta-catenin pathway in conventional high-grade osteosarcoma.
J Pathol. 2010 Jan;220(1):24-33. doi: 10.1002/path.2628.
5
Molecular Signaling Pathways as Potential Therapeutic Targets in Osteosarcoma.
Curr Med Chem. 2022;29(25):4436-4444. doi: 10.2174/0929867329666220209110009.
6
Natural compounds targeting major cell signaling pathways: a novel paradigm for osteosarcoma therapy.
J Hematol Oncol. 2017 Jan 7;10(1):10. doi: 10.1186/s13045-016-0373-z.
7
New molecular insights into osteosarcoma targeted therapy.
Curr Opin Oncol. 2013 Jul;25(4):398-406. doi: 10.1097/CCO.0b013e3283622c1b.
9
PI3K/Akt signaling in osteosarcoma.
Clin Chim Acta. 2015 Apr 15;444:182-92. doi: 10.1016/j.cca.2014.12.041. Epub 2015 Feb 19.
10
RANKL blockade prevents and treats aggressive osteosarcomas.
Sci Transl Med. 2015 Dec 9;7(317):317ra197. doi: 10.1126/scitranslmed.aad0295.

引用本文的文献

1
Feasibility of machine learning-based modeling and prediction to assess osteosarcoma outcomes.
Sci Rep. 2025 May 19;15(1):17386. doi: 10.1038/s41598-025-00179-z.
3
LncRNAs as potential prognosis/diagnosis markers and factors driving drug resistance of osteosarcoma, a review.
Front Endocrinol (Lausanne). 2024 Jul 2;15:1415722. doi: 10.3389/fendo.2024.1415722. eCollection 2024.
5
Deciphering the Signaling Mechanisms of Osteosarcoma Tumorigenesis.
Int J Mol Sci. 2023 Jul 12;24(14):11367. doi: 10.3390/ijms241411367.
6
Suppression of osteosarcoma progression by engineered lymphocyte-derived proteomes.
Genes Dis. 2022 Aug 28;10(4):1641-1656. doi: 10.1016/j.gendis.2022.08.007. eCollection 2023 Jul.
7
Integrated gene network analysis sheds light on understanding the progression of Osteosarcoma.
Front Med (Lausanne). 2023 Apr 4;10:1154417. doi: 10.3389/fmed.2023.1154417. eCollection 2023.
9
Abnormal signal pathways and tumor heterogeneity in osteosarcoma.
J Transl Med. 2023 Feb 9;21(1):99. doi: 10.1186/s12967-023-03961-7.

本文引用的文献

1
Polycystins: Mechanosensors with Diagnostic and Prognostic Potential in Cancer.
Trends Mol Med. 2016 Jan;22(1):7-9. doi: 10.1016/j.molmed.2015.11.002. Epub 2015 Dec 11.
2
RANKL blockade prevents and treats aggressive osteosarcomas.
Sci Transl Med. 2015 Dec 9;7(317):317ra197. doi: 10.1126/scitranslmed.aad0295.
3
Receptor tyrosine kinases: Characterisation, mechanism of action and therapeutic interests for bone cancers.
J Bone Oncol. 2015 Jan 23;4(1):1-12. doi: 10.1016/j.jbo.2015.01.001. eCollection 2015 Mar.
4
Chemotherapy induces stemness in osteosarcoma cells through activation of Wnt/β-catenin signaling.
Cancer Lett. 2016 Jan 28;370(2):286-95. doi: 10.1016/j.canlet.2015.11.013. Epub 2015 Nov 11.
5
Osteosarcoma Stem Cells Have Active Wnt/β-catenin and Overexpress SOX2 and KLF4.
J Cell Physiol. 2016 Apr;231(4):876-86. doi: 10.1002/jcp.25179. Epub 2015 Sep 9.
6
Osteosarcoma: Current Treatment and a Collaborative Pathway to Success.
J Clin Oncol. 2015 Sep 20;33(27):3029-35. doi: 10.1200/JCO.2014.59.4895. Epub 2015 Aug 24.
7
The importance of Src signaling in sarcoma.
Oncol Lett. 2015 Jul;10(1):17-22. doi: 10.3892/ol.2015.3184. Epub 2015 May 6.
8
Immunotherapy for Bone and Soft Tissue Sarcomas.
Biomed Res Int. 2015;2015:820813. doi: 10.1155/2015/820813. Epub 2015 Jun 17.
10
Mechanotransduction pathways in bone pathobiology.
Biochim Biophys Acta. 2015 Sep;1852(9):1700-8. doi: 10.1016/j.bbadis.2015.05.010. Epub 2015 May 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验